Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis
Abstract
:1. Introduction
2. What Is MS (Multiple Sclerosis)?
3. MS—Causes, Risk Factors and Types
3.1. Causes
3.2. Risk Factors
3.3. Types
- Relapsing-remitting MS: the most common form of the disease affecting 85% of MS patients. It is characterised by acute episodes of relapse or exacerbations of the symptoms, interspersed by periods of remission, when the patient’s symptoms improve or disappear.
- Secondary progressive MS: the relapsing-remitting type of the disease might progress to this form in variable degrees within ten years from the first diagnosis. The course of the condition worsens progressively with or without periods of remission or plateaus.
- Primary progressive MS: 10% of patients suffering from MS may present with this form of the disease. As the name suggests, the debilitating symptoms progressively worsen from the onset of the disease. The pattern does not follow relapses or remissions, but there may be the occasional plateaus. This form is usually associated with a poorer outcome.
- Progressive-relapsing MS: only 5% of the MS sufferers will experience this rare form. The disease is progressive from the beginning with spontaneous worsening of the symptoms along the way with no periods of remission.
- Active and early demyelinating
- Active and late demyelinating
- Active and post-demyelinating
- Mixed active/inactive
- Mixed active/inactive and demyelinating
- Mixed active/inactive and post demyelinating
4. Pathogenesis and Pathophysiology
4.1. MS Pathogenesis
4.2. The Experimental Autoimmune Encephalomyelitis (EAE) Model of MS
4.3. Role of Regulatory Adaptive Immune Cells in MS
4.3.1. Tregs
4.3.2. B Regulatory Cells
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Australian Bureou of Statistics. Survey of Disability, Ageing and Carers (SDAC); cat. No. 3303.0.; Australian Bureou of Statistics: Canberra, Australia, 2010.
- Grace, P.M.; Loram, L.C.; Christianson, J.P.; Strand, K.A.; Flyer-Adams, J.G.; Penzkover, K.R.; Forsayeth, J.R.; van Dam, A.M.; Mahoney, M.J.; Maier, S.F.; et al. Behavioral assessment of neuropathic pain, fatigue, and anxiety in experimental autoimmune encephalomyelitis (EAE) and attenuation by interleukin-10 gene therapy. Brain Behav. Immun. 2017, 59, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Gartzen, K.; Katzarava, Z.; Diener, H.C.; Putzki, N. Peripheral nervous system involvement in multiple sclerosis. Eur. J. Neurol. 2011, 18, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Sloane, E.; Ledeboer, A.; Seibert, W.; Coats, B.; van Strien, M.; Maier, S.F.; Johnson, K.W.; Chavez, R.; Watkins, L.R.; Leinwand, L.; et al. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental multiple sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav. Immun. 2009, 23, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Lemus, N.H.; Warrington, A.E.; Rodriguez, M. Multiple sclerosis: Mechanisms of disease and strategies for myelin and axonal repair. Neurol. Clin. 2018, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, T.; Ludwin, S.; Prat, A.; Antel, J.; Brück, W.; Lassmann, H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017, 133, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Hoftberger, R. Neuroimmunology: An expanding frontier in autoimmunity. Front. Immunol. 2015, 6, 206. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, A.C.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Frohman, M.E.; Racke, M.K.; Raine, S.C. Multiple sclerosis—The plaque and its pathogenesis. N. Engl. J. Med. 2006, 354, 942–955. [Google Scholar] [CrossRef] [PubMed]
- MSIF. Atlas of MS 2013 Mapping Multiple Sclerosis around the World. 2017. Available online: https://www.msif.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf (accessed on 24 October 2017).
- Pilli, D.; Zou, A.; Tea, F.; Dale, R.C.; Brilot, F. Expanding role of T cells in human autoimmune diseases of the central nervous system. Front. Immunol. 2017, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.W.; Bo, L.; Mork, S.; Chang, A.; Trapp, B.D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 2001, 50, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-W.; Zhang, X.I.A.; Huang, W.-J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep. 2016, 13, 3391–3396. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.; Goodwin, D. Multiple sclerosis and other demyelinating diseases. In Harrisons Principles of Internal Medicine; Fauci, A.S., Braunwald, E., Kasper, D.L., Eds.; McGraw-Hill Medical: New York, NY, USA, 2008; pp. 2611–2621. [Google Scholar]
- Kuhlmann, T.; Goldschmidt, T.; Antel, J.; Wegner, C.; Konig, F.; Metz, I.; Bruck, W. Gender differences in the histopathology of MS? J. Neurol. Sci. 2009, 286, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Huseby, E.S.; Kamimura, D.; Arima, Y.; Parello, C.S.; Sasaki, K.; Murakami, M. Role of T cell-glial cell interactions in creating and amplifying central nervous system inflammation and multiple sclerosis disease symptoms. Front. Cell. Neurosci. 2015, 9, 295. [Google Scholar] [CrossRef] [PubMed]
- Huseby, E.S.; Huseby, P.G.; Shah, S.; Smith, R.; Stadinski, B.D. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front. Immunol. 2012, 3, 64. [Google Scholar] [CrossRef] [PubMed]
- Zuvich, R.L.; McCauley, J.L.; Oksenberg, J.R.; Sawcer, S.J.; de Jager, P.L.; Aubin, C.; Cross, A.H.; Piccio, L.; Aggarwal, N.T.; Evans, D.; et al. Genetic variation in the IL7RA/IL7 pathway increases multiple sclerosis susceptibility. Hum. Genet. 2010, 127, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Severson, C.; Hafler, D.A. T-cells in multiple sclerosis. Results Probl. Cell Differ. 2010, 51, 75–98. [Google Scholar] [PubMed]
- Hafler, D.A.; Compston, A.; Sawcer, S.; Lander, E.S.; Daly, M.J.; de Jager, P.L.; de Bakker, P.I.; Gabriel, S.B.; Mirel, D.B.; Ivinson, A.J. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 2007, 357, 851–862. [Google Scholar] [PubMed]
- Field, J.; Shahijanian, F.; Schibeci, S.; Johnson, L.; Gresle, M.; Laverick, L.; Parnell, G.; Stewart, G.; McKay, F.; Kilpatrick, T.; et al. The MS risk allele of CD40 is associated with reduced cell-membrane bound expression in antigen presenting cells: Implications for gene function. PLoS ONE 2015, 11, e0127080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2016, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Mei, I.V.D.; Lucas, R.; Taylor, B.; Valery, P.; Dwyer, T.; Kilpatrick, T.; Pender, M.; Williams, D.; Chapman, C.; Otahal, P.; et al. Population attributable fractions and joint effects of key risk factors for multiple sclerosis. Mult. Scler. J. 2016, 22, 461–469. [Google Scholar]
- Sundström, P. Managing Epstein-Barr virus and other risk factors in MS—Future perspectives. Acta Neurol. Scand. 2017, 136, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Ontaneda, D.; Hyland, M.; Cohen, J.A. Multiple sclerosis: New insights in pathogenesis and novel therapeutics. Annu. Rev. Med. 2012, 63, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Stewart, N.; Simpson, S.; van der Mei, I.; Ponsonby, A.-L.; Blizzard, L.; Dwyer, T.; Pittas, F.; Eyles, D.; Ko, P.; Taylor, B.V. Interferon-β and serum 25-hydroxyvitamin D interact to modulate relapse risk in MS. Neurology 2012, 79, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Runia, T.F.; Hop, W.C.; de Rijke, Y.B.; Buljevac, D.; Hintzen, R.Q. Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis. Neurology 2012, 79, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Steve, S.; Bruce, T.; Leigh, B.; Anne-Louise, P.; Fotini, P.; Helen, T.; Terence, D.; der Mei, I. Increasing levels of serum vitamin D are associated with lower rates of relapse in multiple sclerosis. J. Clin. Neurosci. 2009, 16, 1520. [Google Scholar] [CrossRef]
- Correale, J.; Farez, M.F.; Gaitán, M.I. Environmental factors influencing multiple sclerosis in Latin America. Mult. Scler. J. Exp. Trans. Clin. 2017, 3, 2055217317715049. [Google Scholar] [CrossRef] [PubMed]
- Libbey, E.J.; Fujinami, R.S. Potential triggers of MS, in molecular basis of multiple sclerosis. Results Probl. Cell Differ. 2009, 51, 21–42. [Google Scholar]
- McCoy, L.; Tsunoda, I.; Fujinami, R.S. Multiple sclerosis and virus induced immune responses: Autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 2006, 39, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, M.M. Multiple sclerosis review. Pharm. Ther. 2012, 37, 175–184. [Google Scholar]
- Crawford, M.P.; Yan, S.X.; Ortega, S.B.; Mehta, R.S.; Hewitt, R.E.; Price, D.A.; Stastny, P.; Douek, D.C.; Koup, R.A.; Racke, M.K.; et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 2004, 103, 4222–4231. [Google Scholar] [CrossRef] [PubMed]
- Pette, M.; Fujita, K.; Wilkinson, D.; Altmann, D.M.; Trowsdale, J.; Giegerich, G.; Hinkkanen, A.; Epplen, J.T.; Kappos, L.; Wekerle, H. Myelin autoreactivity in multiple sclerosis: Recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc. Natl. Acad. Sci. USA 1990, 87, 7968–7972. [Google Scholar] [CrossRef] [PubMed]
- Cua, D.J.; Sherlock, J.; Chen, Y.; Murphy, C.A.; Joyce, B.; Seymour, B.; Lucian, L.; To, W.; Kwan, S.; Churakova, T.; et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005, 201, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Mangan, P.R.; Harrington, L.E.; O’Quinn, D.B.; Helms, W.S.; Bullard, D.C.; Elson, C.O.; Hatton, R.D.; Wahl, S.M.; Schoeb, T.R.; Weaver, C.T. Transforming growth factor-β induces development of the TH17 lineage. Nature 2006, 441, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Bielekova, B.; Sung, M.-H.; Kadom, N.; Simon, R.; McFarland, H.; Martin, R. Expansion and Functional Relevance of High-Avidity Myelin-Specific CD4+ T Cells in Multiple Sclerosis. J. Immunol. 2004, 172, 3893–3904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Markovic-Plese, S.; Lacet, B.; Raus, J.; Weiner, H.L.; Hafler, D.A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med. 1994, 179, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Tzartos, J.S.; Friese, M.A.; Craner, M.J.; Palace, J.; Newcombe, J.; Esiri, M.M.; Fugger, L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 2008, 172, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007, 13, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- Pare, A.; Mailhot, B.; Levesque, S.A.; Lacroix, S. Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain Behav. Immun. 2017, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, S.A.; Paré, A.; Mailhot, B.; Bellver-Landete, V.; Kébir, H.; Lécuyer, M.-A.; Alvarez, J.I.; Prat, A.; Vaccari, J.P.d.R.; Keane, R.W.; et al. Myeloid cell transmigration across the CNS vasculature triggers IL-1β–driven neuroinflammation during autoimmune encephalomyelitis in mice. J. Exp. Med. 2016, 213, 929–949. [Google Scholar] [CrossRef] [PubMed]
- Waldner, H.; Collins, M.; Kuchroo, V.K. Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J. Clin. Investig. 2004, 113, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Junker, A.; Malotka, J.; Eiglmeier, I.; Lassmann, H.; Wekerle, H.; Meinl, E.; Hohlfeld, R.; Dornmair, K. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 2007, 130, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- Babbe, H.; Roers, A.; Waisman, A.; Lassmann, H.; Goebels, N.; Hohlfeld, R.; Friese, M.; Schröder, R.; Deckert, M.; Schmidt, S.; Ravid, R.; et al. Clonal expansions of CD8+ T cells dominate the t cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 2000, 192, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Egwuagu, E.C.; Yu, C.R. Interleukin 35-producing B Cells (i35-Breg): A new mediator of regulatory B-cell functions in cns autoimmune diseases. Crit. Rev. Immunol. 2015, 35, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Staun-Ram, E.; Miller, A. Effector and regulatory B cells in multiple sclerosis. Clin. Immunol. 2017, 184, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, C.S.; Aram, J.; Tanasescu, R.; Morandi, E.; Frakich, N.; Spendlove, I.; Gran, B. Expression and regulation of GMCSF in immune cell subsets in MS (P1.391). Neurology 2017, 88 (Suppl. 16), P1.391. [Google Scholar]
- Li, R.; Rezk, A.; Miyazaki, Y.; Hilgenberg, E.; Touil, H.; Shen, P.; Moore, C.S.; Michel, L.; Althekair, F.; Rajasekharan, S.; et al. Proinflammatory GM-CSF–producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Steinman, L.; Martin, R.; Bernard, C.; Conlon, P.; Oksenberg, J.R. Multiple sclerosis: Deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci. 2002, 25, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Pröbstel, A.-K.; Sanderson, N.; Derfuss, T. B cells and autoantibodies in multiple sclerosis. Int. J. Mol. Sci. 2015, 16, 16576–16592. [Google Scholar] [CrossRef] [PubMed]
- Barr, T.A.; Shen, P.; Brown, S.; Lampropoulou, V.; Roch, T.; Lawrie, S.; Fan, B.; O’Connor, R.A.; Anderton, S.M.; Bar-Or, A.; et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 2012, 209, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duddy, M.; Niino, M.; Adatia, F.; Hebert, S.; Freedman, M.; Atkins, H.; Kim, H.J.; Bar-Or, A. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 2007, 178, 6092–6099. [Google Scholar] [CrossRef] [PubMed]
- Guerrier, T.; Labalette, M.; Launay, D.; Lee-Chang, C.; Outteryck, O.; Lefevre, G.; Vermersch, P.; Dubucquoi, S.; Zephir, H. Proinflammatory B-cell profile in the early phases of MS predicts an active disease. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e431. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.P.; Harp, C.T.; Noronha, A.; Miller, S.D. The experimental autoimmune encephalomyelitis (EAE) model of MS: Utility for understanding disease pathophysiology and treatment. Handb. Clin. Neurol. 2014, 122, 173–189. [Google Scholar] [PubMed]
- Aubé, B.; Lévesque, S.A.; Paré, A.; Chamma, É.; Kébir, H.; Gorina, R.; Lécuyer, M.-A.; Alvarez, J.I.; de Koninck, Y.; Engelhardt, B.; et al. Neutrophils mediate blood–spinal cord barrier disruption in demyelinating neuroinflammatory diseases. J. Immunol. 2014, 193, 2438–2454. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.N.; Wang, C.; Zhang, C.-J.; Kang, Z.; Gulen, M.F.; Zepp, J.A.; Zhao, J.; Bian, G.; Do, J.-S.; Min, B.; et al. T cell–intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis. Nat. Immunol. 2016, 17, 583. [Google Scholar] [CrossRef] [PubMed]
- Mayo, L.; Trauger, S.A.; Blain, M.; Nadeau, M.; Patel, B.; Alvarez, J.I.; Mascanfroni, I.D.; Yeste, A.; Kivisäkk, P.; Kallas, K.; et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 2014, 20, 1147. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Choudhury, G.R.; Winters, A.; Yang, S.-H.; Jin, K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur. J. Immunol. 2015, 45, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, Y.; O’Hagan, T.; Dittmer, M.; Penalva, R.; Mayoral, S.R.; Bankhead, P.; Fleville, S.; Eleftheriadis, G.; Zhao, C.; Naughton, M.; et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 2017, 20, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.X.; Yu, C.R.; Dambuza, I.M.; Mahdi, R.M.; Dolinska, M.B.; Sergeev, Y.V.; Wingfield, P.T.; Kim, S.H.; Egwuagu, C.E. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat. Med. 2014, 20, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Li, R.; Jouneau, L.; Boudinot, P.; Wilantri, S.; Sakwa, I.; Miyazaki, Y.; Leech, M.D.; McPherson, R.C.; Wirtz, S.; et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014, 507, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.L.; Suzuki, K.; Chaplin, D.D.; Matsushima, G.K. Interleukin-1β promotes repair of the CNS. J. Neurosci. 2001, 21, 7046–7052. [Google Scholar] [PubMed]
- Mendiola, S.A.; Cardona, A.E. The IL-1beta phenomena in neuroinflammatory diseases. J. Neural Transm. (Vienna) 2017. [Google Scholar] [CrossRef] [PubMed]
- Ellwardt, E.; Walsh, J.T.; Kipnis, J.; Zipp, F. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 2016, 37, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Gyulveszi, G.; Haak, S.; Becher, B. IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo. Eur. J. Immunol. 2009, 39, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
- Segal, B.M. Getting to the crux of the matter: IL-23 and Th17 cell accumulation in the CNS. Eur. J. Immunol. 2009, 39, 1713–1715. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Xiong, Z.; Hu, Y.; Qi, S.; Song, L.; Dun, H.; Zhang, L.; Lou, D.; Yang, P.; Zhao, Z.; et al. Dysfunction of IL-10-producing type 1 regulatory T cells and CD4(+)CD25(+) regulatory T cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys. Int. Immunopharmacol. 2009, 9, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Vela, J.M.; Molina-Holgado, E.; Arévalo-Martı́n, Á.; Almazán, G.; Guaza, C. Interleukin-1 Regulates Proliferation and Differentiation of Oligodendrocyte Progenitor Cells. Mol. Cell. Neurosci. 2002, 20, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Miron, V.E. Beyond immunomodulation: The regenerative role for regulatory T cells in central nervous system remyelination. J. Cell Commun. Signal. 2017, 11, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Ochi, H.; Fujii, C.; Hashi, Y.; Hamatani, M.; Ashida, S.; Kawamura, K.; Kusaka, H.; Matsumoto, S.; Nakagawa, M.; et al. Signaling via toll-like receptor 4 and CD40 in B cells plays a regulatory role in the pathogenesis of multiple sclerosis through interleukin-10 production. J. Autoimmun. 2017. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.S.; Cui, Q.L.; Warsi, N.M.; Durafourt, B.A.; Zorko, N.; Owen, D.R.; Antel, J.P.; Bar-Or, A. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation. J. Immunol. 2015, 194, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Itani, F.R.; Karandikar, N.J. Immune regulation of multiple sclerosis by CD8+ T cells. Immunol. Res. 2014, 59, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Kashi, P.V.; Ortega, S.B.; Karandikar, N.J. Neuroantigen-specific autoregulatory CD8+ T cells inhibit autoimmune demyelination through modulation of dendritic cell function. PLoS ONE 2014, 9, e105763. [Google Scholar] [CrossRef] [PubMed]
- El Behi, M.; Sanson, C.; Bachelin, C.; Guillot-Noel, L.; Fransson, J.; Stankoff, B.; Maillart, E.; Sarrazin, N.; Guillemot, V.; Abdi, H.; et al. Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 2017, 140, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Farjam, M.; Zhang, G.X.; Ciric, B.; Rostami, A. Emerging immunopharmacological targets in multiple sclerosis. J. Neurol. Sci. 2015, 358, 22–30. [Google Scholar] [CrossRef] [PubMed]
Cell Type | MS Phase/Released Cytokine | Reference |
---|---|---|
Neutrophils | Acute Phase/IL-1β | [58] |
Monocytes and Monocytes-derived Macrophages (MDM) | Acute Phase/IL-1β | [58] |
T helper cells (Th17) | Chronic Phase/IL-1β | [59] |
Microglia | Chronic Phase/IL-1β | [44] |
Astrocytes | Chronic Phase IL-1β | [60] |
B cells | Acute-Chronic and secondary progressive Phases | [49] |
T regulatory cells (Tregs) | Chronic Phase—Remission/IL-10 | [61,62] |
B regulatory cells (Bregs) | Chronic Phase—Remission/IL-10 and IL-35 | [48,63,64] |
Interleukin (IL) Type | Source | Function | Cells Recruitment/Activity | References |
---|---|---|---|---|
IL-17 | Th 17 cells CD8+ T cells Glial cells Mucosal associated invariable T cells NK (natural killer) cells | Proinflammatory/acute inflammatory process | CD4+ T cells recruitment CD8+ T cells recruitment Neutrophil infiltration and migration to the CNS | [40,45,67] |
IL-1α | Microglial cells APC (antigen presenting cells) | Proinflammatory/traumatic lead inflammation | CD4+ T cells recruitment | [42,44] |
IL-1β | Microglial cells AP | Proinflammatory/autoinflammatory process and infective | CD4+ T cells recruitment | [42,44] |
IL-23, IL-12, IL-2 | APC, Microglia cells, MDMs | Proinflammatory | Th1 and Th17 cells polarization, CNS trophism by autoreactive effector cells | [35,39,40,45,68,69] |
IL-10 | Microglia/Macrophages, Tr1 cells | Anti-inflammatory | Reduce CD4+ T cells recruitment Promote Treg cells expansion | [61,70] |
IL-2 | Astrocytes | Anti-inflammatory | Regulation and recruitment of Treg cells | [61] |
IL-1 | Th1 cells—CD4+ T cells | Pro-remyelination | Differentiation and recruitment of oligodendrocyte progenitor cells (OPC) | [40,62,65,71] |
IL-2 | Treg cells | Pro-remyelination | Differentiation and recruitment of OPC | [61] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Badri, G.; Castorina, A. Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. J. Funct. Morphol. Kinesiol. 2018, 3, 13. https://doi.org/10.3390/jfmk3010013
Al-Badri G, Castorina A. Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. Journal of Functional Morphology and Kinesiology. 2018; 3(1):13. https://doi.org/10.3390/jfmk3010013
Chicago/Turabian StyleAl-Badri, Ghaith, and Alessandro Castorina. 2018. "Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis" Journal of Functional Morphology and Kinesiology 3, no. 1: 13. https://doi.org/10.3390/jfmk3010013
APA StyleAl-Badri, G., & Castorina, A. (2018). Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. Journal of Functional Morphology and Kinesiology, 3(1), 13. https://doi.org/10.3390/jfmk3010013