Using Physical Activity to Enhance Health Outcomes Across the Life Span
Abstract
:1. Introduction
2. Physical Activity across Age Groups
3. Physical Activity and Gender
4. Physical Activity across Atypical Population
5. Physical Activity and Lifestyle
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Frederick-Recascino, C.; Morris, T. Intrinsic and extrinsic motivation in sport and exercise. In Sport Psychology: Theory, Applications and Issues; Morris, T., Summers, J., Eds.; John Wiley & Sons: Melbourne, Australia, 2004; pp. 121–151. [Google Scholar]
- Lloyd-Jones, D.M.; Yuling, H.; Labarthe, D.; Mozaffarian, L.J.; Appel, L.; Van Horn, K. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic impact goal, through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, C.E.; Chen, K.Y.; Freedson, P.S.; Buchowski, M.S.; Beech, B.M.; Pate, R.R.; Troiano, R.P. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am. J. Epidemiol. 2008, 167, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, B.H.; Kolle, E.; Dyrstad, S.M.; Holme, I.; Anderssen, S.A. Accelerometer-determined physical activity in adults and older people. Med. Sci. Sports Exerc. 2012, 44, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Grøntved, A.; Hu, F.B. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A meta-analysis. JAMA 2011, 305, 2448–2455. [Google Scholar] [CrossRef] [Green Version]
- Chau, J.Y.; Grunseit, A.C.; Chey, T.; Stamatakis, E.; Brown, W.J.; Matthews, C.E.; Bauman, A.E.; van der Ploeg, H.P. Daily sitting time and all-cause mortality: A meta-analysis. PLoS ONE 2013, 8, 80000. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; van Mechelen, W.; Pratt, M. The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet 2016, 388, 1311–1324. [Google Scholar] [CrossRef]
- Torjesen, I. Global cost of physical inactivity is estimated at $67.5bn a year. BMJ 2016, 354, i4187. [Google Scholar] [CrossRef]
- Prevalence of Insufficient Physical Activity. Available online: https://www.who.int/gho/ncd/risk_factors/physical_activity_text/en/ (accessed on 20 November 2019).
- Physical Activity. Available online: https://www.who.int/dietphysicalactivity/pa/en/ (accessed on 20 November 2019).
- Global Recommendations on Physical Activity for Health. Available online: https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/ (accessed on 20 November 2019).
- Global Recommezndations on Physical Activity for Health. Available online: https://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_eng.pdf;jsessionid=DE9AB06EE6639F7F13089681CD5D7298?sequence=1 (accessed on 20 November 2019).
- González, K.; Fuentes, J.; Márquez, J.L. Physical inactivity, sedentary behavior and chronic diseases. Korean J. Fam. Med. 2017, 38, 111. [Google Scholar] [CrossRef] [Green Version]
- Yates, T.; Wilmot, E.G.; Davies, M.J.; Gorely, T.; Edwardson, C.; Biddle, S.; Khunti, K. Sedentary behavior. Am. J. Prev. Med. 2011, 40, e33–e34. [Google Scholar] [CrossRef]
- Pate, R.R.; O’Neill, J.R.; Lobelo, F. The evolving definition of “sedentary”. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Mutrie, N. Psychology of Physical Activity: Determinants, Well-Being and Interventions; Routledge: London, UK, 2007. [Google Scholar]
- Hoare, E.; Stavreski, B.; Jennings, G.; Kingwell, B. Exploring motivation and barriers to physical activity among active and inactive Australian adults. Sports 2017, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, D. Examining Reasons for Participation in Sport and Exercise Using the Physical Activity and Leisure Motivation Scale (PALMS). Ph.D. Thesis, Victoria University, Melbourne, Australia, 2012. [Google Scholar]
- Roychowdhury, D. A comprehensive measure of participation motivation: Examining and validating the Physical Activity and Leisure Motivation Scale. J. Hum. Sport Exerc. 2018, 13, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Roychowdhury, D. Functional significance of participation motivation on physical activity involvement. Psychol. Thought 2018, 11, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Saakslahti, A.; Numminen, P.; Niinikoski, H.; Rask-Nissila, L.; Viikari, J.; Tuominen, J.; Välimäki, I. Is physical activity related to body size, fundamental motor skills, and CHD risk factors in early childhood? Pediatric Exerc. Sci. 1999, 11, 327–340. [Google Scholar] [CrossRef]
- Sääkslahti, A.; Numminen, P.; Varstala, V.; Helenius, H.; Tammi, A.; Viikari, J.; Välimäki, I. Physical activity as a preventive measure for coronary heart disease risk factors in early childhood. Scand. J. Med. Sci. Sports 2004, 14, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Binkley, T.; Specker, B. Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone 2004, 35, 1383–1388. [Google Scholar] [CrossRef]
- Janz, K.F.; Burns, T.L.; Torner, J.C.; Levy, S.M.; Paulos, R.; Willing, M.C.; Warren, J.J. Physical activity and bone measures in young children: The Iowa bone development study. Pediatrics 2001, 107, 1387–1393. [Google Scholar] [CrossRef]
- Metallinos-Katsaras, E.S.; Freedson, P.S.; Fulton, J.E.; Sherry, B. The association between an objective measure of physical activity and weight status in preschoolers. Obesity 2007, 15, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Trost, S.G.; Sirard, J.R.; Dowda, M.; Pfeiffer, K.A.; Pate, R.R. Physical activity in overweight and non-overweight preschool children. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Janz, K.F.; Levy, S.M.; Burns, T.L.; Torner, J.C.; Willing, M.C.; Warren, J.J. Fatness, physical activity, and television viewing in children during the adiposity rebound period: The Iowa bone development study. Prev. Med. 2002, 35, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Atkin, L.M.; Davies, P.S. Diet composition and body composition in preschool children. Am. J. Clin. Nutr. 2000, 72, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Cliff, D.P.; Okely, A.D.; Smith, L.M.; Kim, M. Relationships between fundamental movement skills and objectively measured physical activity in preschool children. Pediatric Exerc. Sci. 2009, 21, 436–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colwell, M.; Lindsey, E. Preschool children’s pretend and physical play and sex of play partner: Connections to peer competence. Sex Roles 2005, 52, 497–509. [Google Scholar] [CrossRef]
- Lindsey, E.W.; Colwell, M.J. Preschoolers’ emotional competence: Links to pretend and physical play. Child Study J. 2003, 33, 39–52. [Google Scholar]
- Tomporowski, P.; McCullick, B.; Pesce, C. Enhancing Children’s Cognition with Physical Activity Games; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J. Sport Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Hillman, C.H. The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatric Exerc. Sci. 2014, 26, 138–146. [Google Scholar] [CrossRef]
- Singh, A.; Uijtdewilligen, L.; Twisk, J.R.; van Mechelen, W.; Chinapaw, M.M. Physical activity and performance at school: A systematic review of the literature including a methodological quality assessment. Arch. Pediatrics Adolesc. Med. 2012, 166, 49–55. [Google Scholar] [CrossRef]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Garrido-Miguel, M.; Martínez-Vizcaíno, V. Academic achievement and physical activity: A meta-analysis. Pediatrics 2017, 140, e20171498. [Google Scholar] [CrossRef] [Green Version]
- Santana, C.A.; Azevedo, L.B.; Cattuzzo, M.T.; Hill, J.O.; Andrade, L.P.; Prado, W.L. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports 2017, 27, 579–603. [Google Scholar] [CrossRef] [Green Version]
- Owen, K.B.; Parker, P.D.; Van Zanden, B.; MacMillan, F.; Astell-Burt, T.; Lonsdale, C. Physical activity and school engagement in youth: A systematic review and meta-analysis. Educ. Psychol. 2016, 51, 129–145. [Google Scholar] [CrossRef]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babic, M.; Morgan, P.J.; Plotnikoff, R.C.; Lonsdale, C.; White, R.L.; Lubans, D.R. Physical activity and physical self-concept in youth: Systematic review and meta-analysis. Sports Med. 2014, 44, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Chaddock-Heyman, L.; Erickson, K.I.; Voss, M.; Knecht, A.; Pontifex, M.B.; Castelli, D.; Hillman, C.; Kramer, A. The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Front. Hum. Neurosci. 2013, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Egger, F.; Conzelmann, A.; Schmidt, M. The effect of acute cognitively engaging physical activity breaks on children’s executive functions: Too much of a good thing? Psychol. Sport Exerc. 2018, 36, 178–186. [Google Scholar] [CrossRef]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. J. Sport Exerc. Psychol. 2015, 37, 575–591. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Mavilidi, M.F.; Okely, A.; Chandler, P.; Domazet, S.L.; Paas, F. Immediate and delayed effects of integrating physical activity into preschool children’s learning of numeracy skills. J. Exp. Child Psychol. 2018, 166, 502–519. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Ruiter, M.; Schmidt, M.; Okely, A.D.; Loyens, S.; Chandler, P.; Paas, F. A narrative review of school-based physical activity for enhancing cognition and learning: The importance of relevancy and integration. Front. Psychol. 2018, 9, 2079. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Okely, A.D.; Chandler, P.; Cliff, D.P.; Paas, F. Effects of integrated physical exercises and gestures on preschool children’s foreign language vocabulary learning. Educ. Psychol. Rev. 2015, 27, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Mavilidi, M.F.; Okely, A.D.; Chandler, P.; Paas, F. Effects of integrating physical activities into a science lesson on preschool children’s learning and enjoyment. Mind Brain Educ. 2017, 31, 281–290. [Google Scholar] [CrossRef]
- Mavilidi, M.F.; Okely, A.D.; Chandler, P.; Paas, F. Infusing physical activities into the classroom: Effects on preschool children’s geography learning. Appl. Cogn. Psychol. 2016, 10, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Toumpaniari, K.; Loyens, S.; Mavilidi, M.F.; Paas, F. Preschool children’s foreign language vocabulary learning by embodying words through physical activity and gesturing. Educ. Psychol. Rev. 2015, 27, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Riley, N.; Lubans, D.R.; Holmes, K.; Gore, J.; Hansen, V.; Morgan, P.J. Movement-based mathematics: Enjoyment and engagement without compromising learning through the EASY Minds program. Eurasia J. Math Sci. Technol. Educ. 2017, 13, 1653–1673. [Google Scholar] [CrossRef] [Green Version]
- Riley, N.; Lubans, D.R.; Holmes, K.; Morgan, P.J. Findings from the EASY Minds cluster randomized controlled trial: Evaluation of a physical activity integration program for mathematics in primary schools. J. Phys. Act. Health 2016, 13, 198–206. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Egger, F.; Benzing, V.; Jäger, K.; Conzelmann, A.; Roebers, C.M.; Pesce, C. Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS ONE 2017, 12, e0182845. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Lee, K. Interventions shown to aid executive function development in children 4 to 12 years old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Anokye, N.K.; Trueman, P.; Green, C. Physical activity and health related quality of life. BMC Public Health 2012, 12, 624. [Google Scholar] [CrossRef] [Green Version]
- Bize, R.; Johnson, J.A.; Plotnikoff, R.C. Physical activity level and health-related quality of life in the general adult population: A systematic review. Prev. Med. 2007, 45, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Vuillemin, A.; Boini, S.; Bertrais, S.; Tessier, S.; Oppert, J.M.; Hercber., S.; Guillemin, F.; Briançon, S. Leisure time physical activity and health-related quality of life. Prev. Med. 2005, 41, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Wendel-Vos, G.; Schuit, A.; Tijhuis., M.; Kromhout, D. Leisure time physical activity and health-related quality of life: Cross-sectional and longitudinal associations. Qual. Life Res. 2004, 13, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.; Charlesworth, S.; Ivey, A.; Nettlefold, L.; Bredin, S.S. A systematic review of the evidence for Canada’s physical activity guidelines for adults. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Physical Activity Guidelines Advisory Committee (PAGAC). Physical Activity Guidelines Advisory Committee Report; US Department of Health and Human Services: Washington, DC, USA, 2008.
- Cook, I.; Alberts, M.; Lambert, E.V. Relationship between adiposity and pedometer-assessed ambulatory activity in adult, rural African women. Int. J. Obes. 2008, 32, 1327–1330. [Google Scholar] [CrossRef] [Green Version]
- Nocon, M.; Hiemann, T.; Müller-Riemenschneider, F.; Thalau, F.; Roll, S.; Willich, S.N. Association of physical activity with all-cause and cardiovascular mortality: A systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 239–246. [Google Scholar] [CrossRef]
- Sofi, F.; Capalbo, A.; Cesari, F.; Abbate, R.; Gensini, G.F. Physical activity during leisure time and primary prevention of coronary heart disease: An updated meta-analysis of cohort studies. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 247–257. [Google Scholar] [CrossRef]
- Warburton, D.; Katzmarzyk, P.T.; Rhodes, R.E.; Shephard, R.J. Evidence-informed physical activity guidelines for Canadian adults. Can. J. Public Health 2007, 98, S16–S68. [Google Scholar]
- Bauman, A.; Lewicka, M.; Schöppe, S. The Health Benefits of Physical Activity in Developing Countries; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Steyn, K.; Sliwa, K.; Hawken, S.; Commerford, P.; Onen, C.; Damasceno, A.; Ounpuu, S.; Yusuf, S. Risk factors associated with myocardial infarction in Africa: The INTERHEART Africa study. Circulation 2005, 112, 3554–3561. [Google Scholar] [CrossRef] [Green Version]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 2008, 9, 1–65. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.F.; Bherer, L.; Colcombe, S.J.; Dong, W.; Greenough, W.T. Environmental influences on cognitive and brain plasticity during aging. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 940–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares-Miranda, L.; Siscovick, D.S.; Psaty, B.M.; Longstreth, W.T.; Mozaffarian, D. Physical activity and risk of coronary heart disease and stroke in older adults. The Cardiovascular Health Study. Circulation 2016, 133, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Lacey, B.; Golledge, J.; Yeap, B.B.; Lewington, S.; Norman, P.E.; Flicker, L.; Almeida, O.P.; Hankey, G.J. Physical activity and vascular disease in a prospective cohort study of older men: The Health in Men Study (HIMS). BMC Geriatr. 2015, 9, 15–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, O.P.; Khan, K.M.; Hankey, G.J.; Yeap, B.B.; Golledge, J.; Flicker, L. 150 Minutes of vigorous physical activity per week predicts survival and successful aging: A population based 11-year longitudinal study of 12,201 older Australian men. Br. J. Sports Med. 2014, 48, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Hamer, M.; de Oliveira, C.; Demakakos, P. Non-exercise physical activity and survival. Am. J. Prev. Med. 2014, 47, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Valecchi, D.; Bacci, D.; Abbate, R.; Gensini, G.F.; Casini, A.; Macchi, C. Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. J. Intern. Med. 2011, 269, 107–117. [Google Scholar] [CrossRef]
- Laurin, D.; Verreauli, R.; Lindsay, J.; MacPherson, K.; Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001, 58, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Varma, V.R.; Tan, E.J.; Wang, T.; Xue, Q.L.; Fried, L.P.; Seplaki, C.L.; King, A.C.; Seeman, T.E.; Rebok, G.W.; Carlson, M.C. Low-intensity walking activity is associated with better health. J. Appl. Gerontol. 2014, 33, 870–887. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Brosky, J.A. Objectively measured physical activity and balance among US adults. J. Strength Cond. Res. 2014, 28, 2290–2298. [Google Scholar] [CrossRef]
- Hillsdon, M.M.; Brunner, E.J.; Guralnik, J.M.; Marmot, M.G. Prospective study of physical activity and physical function in early old age. Am. J. Prev. Med. 2005, 28, 245–250. [Google Scholar] [CrossRef]
- Mummery, K.; Schofield, G.; Caperchione, C. Physical activity dose-response effects on mental health status in older adults. Aust. N. Z. J. Public Health 2004, 28, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Becofsky, K.; Baruth, M.; Wilcox, S. Physical activity mediates the relationship between program participation and improved mental health in older adults. Public Health 2016, 132, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gebel, K.; Ding, D.; Chey, T.; Stanatakis, E.; Brown, W.J.; Bauman, A.E. Effect of moderate to vigorous physical activity on all-cause mortality in -age and older Australians. JAMA Intern. Med. 2015, 175, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Hupin, D.; Roche, F.; Gremeau, V.; Chatard, J.C.; Oriol, M.; Gaspoz, J.M.; Barthélémy, J.C.; Edouard, P. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged 60 years: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1262–1267. [Google Scholar] [CrossRef]
- Nagai, M.; Kuriyama, S.; Kakizaki, M.; Ohmori-Matsuda, K.; Sone, T.; Hozawa, A.; Kawado, M.; Hashimoto, S.; Tsuji, I. Impact of walking on life expectance and lifetime medical expenditure: The Ohsaki Cohort Study. BMJ Open 2011, 1. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.R.; Carroll, D.D.; Workman, L.M.; Carlson, S.A.; Brown, D.W. Physical activity and health-related quality of life: US adults with and without limitations. Qual. Life Res. 2014, 23, 2673–2680. [Google Scholar] [CrossRef] [Green Version]
- Heesch, K.C.; van Uffelen, J.G.; van Gellecum, Y.R.; Brown, W.J. Dose-response relationships between physical activity, walking and health-related quality of life in mid-age and older women. J. Epidemiol. Community Health 2012, 66, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Renaud, M.; Bherer, L.; Maquestiaux, F. A high level of physical fitness is associated with more efficient response preparation in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2010, 65, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Weiss, E.P.; Hagberg, J.M.; Hatfield, B.D. The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology 2002, 39, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Abourezk, T.; Toole, T. Effect of task complexity on the relationship between physical fitness and reaction time in older women. J. Aging Phys. Act. 1995, 3, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Clarkson-Smith, L.; Hartley, A.A. Relationships between physical exercise and cognitive abilities in older adults. Psychol. Aging 1989, 4, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Spirduso, W.W. Reaction and movement time as a function of age and physical activity level. J. Gerontol. 1975, 30, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Aichberger, M.C.; Busch, M.A.; Reischies, F.M.; Ströhle, A.; Heinz, A.; Rapp, M.A. Effect of physical inactivity on cognitive performance after 2.5 years of follow-up: Longitudinal results from the survey of health, ageing, and retirement (SHARE). GeroPsych 2010, 23, 7–15. [Google Scholar] [CrossRef]
- Rikli, R.E.; Edwards, D.J. Effects of a three-year exercise program on motor function and cognitive processing speed in older women. Res. Q. Exerc. Sport 1991, 62, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Dustman, R.E.; Ruhling, R.O.; Russell, E.M.; Shearer, D.E.; Bonekat, H.W.; Shigeoka, J.W.; Wood, J.S.; Bradford, D.C. Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiol. Aging 1984, 5, 35–42. [Google Scholar] [CrossRef]
- Albinet, C.T.; Boucard, G.; Bouquet, C.A.; Audiffren, M. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur. J. Appl. Physiol. 2010, 109, 617–624. [Google Scholar] [CrossRef]
- Kramer, A.F.; Hahn, S.; Cohen, N.J.; Banich, M.T.; McAuley, E.; Harrison, C.R.; Chason, J.; Vakil, E.; Bardell, L.; Boileau, R.A.; et al. Ageing, fitness and neurocognitive function. Nature 1999, 400, 418–419. [Google Scholar] [CrossRef]
- Almli, C.R.; Ball, R.H.; Wheeler, M.E. Human fetal and neonatal movement patterns: Gender differences and fetal-to-neonatal continuity. Dev. Psychobiol. 2001, 38, 252–273. [Google Scholar] [CrossRef]
- Campbell, D.W.; Eaton, W.O. Sex differences in the activity level of infants. Infant Child Dev. 1999, 8, 1–17. [Google Scholar] [CrossRef]
- Goldberg, S.; Lewis, M. Play behaviour in the year-old infant: Early sex differences. Child Dev. 1969, 40, 21–31. [Google Scholar] [CrossRef]
- Hutt, C. Sex differences in human development. Hum. Dev. 1972, 15, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; McIver, K.; Dowda, M.; Brown, W.H.; Addy, C. Directly observed physical activity levels in preschool children. J. Sch. Health 2008, 78, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Pate, R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef]
- Yeats, B. Women and Physical Activity Gender Impact Assessment 12; Women’s Health Victoria: Melbourne, Australia, 2010. [Google Scholar]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, R.E.; Mark, R.S.; Temmel, C.P. Adult sedentary behavior: A systematic review. Am. J. Prev. Med. 2012, 42, e3–e28. [Google Scholar] [CrossRef]
- Chalabaev, A.; Sarrazin, P.; Fontayne, P.; Boiché, J.; Clément-Guillotin, C. The influence of sex stereotypes and gender roles on participation and performance in sport and exercise: Review and future directions. Psychol. Sport Exerc. 2013, 14, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Edwards, E.; Sackett, S. Psychosocial variables related to why women are less active than men and related health implications. Clin. Med. Insights Women’s Health 2016, 9, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Bengoechea, E.G.; Spence, J.C.; McGannon, K.R. Gender differences in perceived environmental correlates of physical activity. Int. J. Behav. Nutr. Phys. Act. 2005, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, M.; De Bourdeaudhuij, I.; Cardon, G. The relationship between physical activity and mental health varies across activity intensity levels and dimensions of mental health among women and men. Public Health Nutr. 2010, 13, 1207–1214. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, J.; Franco, O.H.; Orsini, N.; Roberts, I. Non-vigorous physical activity and all-cause mortality: Systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 2011, 40, 121–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanasescu, M.; Leitzmann, M.F.; Rimm, E.B.; Hu, F.B. Physical activity in relation to cardiovascular disease and total mortality among men with type 2 diabetes. Circulation 2003, 107, 2435–2439. [Google Scholar] [CrossRef] [PubMed]
- Tanasescu, M.; Leitzmann, M.F.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002, 288, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Sattelmair, J.; Pertman, J.; Ding, E.L.; Kohl, H.W.; Haskell, W.; Lee, I.M. Dose response between physical activity and risk of coronary heart disease. Circulation 2011, 124, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassuk, S.S.; Manson, J.E. Physical activity and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 467–473. [Google Scholar] [CrossRef]
- Manson, J.E.; Greenland, P.; LaCroix, A.Z.; Stefanick, M.L.; Mouton, C.P.; Oberman, A.; Perri, M.G.; Sheps, D.S.; Pettinger, M.B.; Siscovick, D.S. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N. Engl. J. Med. 2002, 347, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.M.; Rexrode, K.M.; Cook, N.R.; Manson, J.E.; Buring, J.E. Physical activity and coronary heart disease in women: Is "no pain, no gain: Passe? JAMA 2001, 285, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Sigal, R.J.; Rich-Edwards, J.W.; Colditz, G.A.; Solomon, C.G.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Waking compared with vigorous physical activity and risk of type 2 diabetes in women. JAMA 1999, 282, 1433–1439. [Google Scholar] [CrossRef] [Green Version]
- Friedenreich, C.M.; Neilson, H.K.; Lynch, B.M. State of the epidemiological evidence on physical activity and cancer prevention. Eur. J. Cancer 2010, 46, 2593–2604. [Google Scholar] [CrossRef]
- Tiggemann, M.; Williamson, S. The effect of exercise on body satisfaction and self-esteem as a function of gender and age. Sex Roles 2000, 43, 119–127. [Google Scholar] [CrossRef]
- Lustyk, M.K.; Widman, L.; Paschane, A.A.; Olson, K.C. Physical Activity and Quality of Life: Assessing the Influence of Activity Frequency, Intensity, Volume, and Motives. Behav. Med. 2004, 30, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Physical activity, sedentary behaviors, and obesity. In Obesity Epidemiology; Hu, F.B., Ed.; Oxford University Press: New York, NY, USA, 2008; pp. 301–319. [Google Scholar]
- Jaggers, J.R.; Hand, G.A. Health benefits of exercise for people living with HIV: A review of the literature. Am. J. Lifestyle Med. 2016, 10, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.D.; Battegay, M.; Behrens, G.; De Wit, S.; Guaraldi, G.; Katlama, C.; Martinez, E.; Nair, D.; Powderly, W.G.; Reiss, P.; et al. European AIDS clinical society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 2008, 9, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedenreich, C.M. Physical activity and cancer prevention: From observational to intervention research. Cancer Epidemiol. Biomark. Prev. 2001, 10, 287–301. [Google Scholar]
- Friedenreich, C.M.; Orenstein, M.R. Physical activity and cancer prevention: Etiologic evidence and biological mechanisms. J. Nutr. 2002, 132, 3456S–3464S. [Google Scholar] [CrossRef] [PubMed]
- Tamakoshi, K.; Tokudome, S.; Kuriki, K.; Takekuma, K.; Toyoshima, H. Epidemiology and primary prevention of colorectal cancer. Gan To Kagaku Ryoho 2001, 28, 146–150. [Google Scholar] [PubMed]
- Thune, I.; Furberg, A.S. Physical activity and cancer risk: Dose-response and cancer, all sites and site-specific. Med. Sci. Sports Exerc. 2001, 33, S530–S550. [Google Scholar] [CrossRef]
- Shephard, R.J. Exercise in the prevention and treatment of cancer. An update. Sports Med. 1993, 15, 258–280. [Google Scholar] [CrossRef]
- Shephard, R.J. Physical activity and cancer. Int. J. Sports Med. 1990, 11, 413–420. [Google Scholar] [CrossRef]
- Moore, S.C.; Gierach, G.L.; Schatzkin, A.; Matthews, C.E. Physical activity, sedentary behaviours, and the prevention of endometrial cancer. Br. J. Cancer 2010, 103, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Hackam, D.G.; Spence, J.D. Combining multiple approaches for the secondary prevention of vascular events after stroke: A quantitative modeling study. Stroke 2007, 38, 1881–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sluik, D.; Buijsse, B.; Muckelbauer, R.; Kaaks, R.; Teucher, B.; Tj, A.; Overvad, K.; Amiano, P.; Ardanaz, E.; Bendinelli, B.; et al. Physical activity and mortality in individuals with diabetes mellitus: A prospective study and meta-analysis. Arch. Intern. Med. 2012, 172, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [PubMed]
- Mikkelsen, K.; Stojanovska, L.; Polenakovic, M.; Bosevski, M.; Apostolopoulos, V. Exercise and mental health. Maturitas 2017, 106, 48–56. [Google Scholar] [CrossRef]
- Asmundson, G.J.; Fetzner, M.G.; DeBoer, L.B.; Powers, M.B.; Otto, M.W.; Smits, J.A. Let’s get physical: A contemporary review of the anxiolytic effects of exercise for anxiety and its disorders. Depress. Anxiety 2013, 30, 362–373. [Google Scholar] [CrossRef]
- Warburton, D.E.; Bredin, S.S. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef]
- Helgadóttir, B.; Forsell, Y.; Ekblom, Ö. Physical activity patterns of people affected by depressive and anxiety disorders as measured by accelerometers: A cross-sectional study. PLoS ONE 2015, 10, e0115894. [Google Scholar] [CrossRef]
- LeBouthillier, D.M.; Asmundson, G.J. The efficacy of aerobic exercise and resistance training as transdiagnostic interventions for anxiety-related disorders and constructs: A randomized controlled trial. J. Anxiety Disord. 2017, 52, 43–52. [Google Scholar] [CrossRef]
- Hallgren, M.; Herring, M.P.; Owen, N.; Dunstan, D.; Ekblom, Ö.; Helgadottir, B.; Nakitanda, O.A.; Forsell, Y. Exercise, physical activity, and sedentary behavior in the treatment of depression: Broadening the scientific perspectives and clinical opportunities. Front. Psychiatry 2016, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Abu-Omar, K.; Rutten, A.; Robine, J.M. Self-rated health and physical activity in the European Union. Soz. Prav. 2004, 49, 235–242. [Google Scholar] [CrossRef]
- Manderbacka, K. Examining what self-rated health question is understood to mean by respondents. Scand. J. Soc. Med. 1998, 26, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Noordstar, J.J.; Van der Net, J.; Jak, S.; Helders, P.J.; Jongmans, M.J. Global self-esteem, perceived athletic competence, and physical activity in children: A longitudinal cohort study. Psychol. Sport Exerc. 2016, 22, 83–90. [Google Scholar] [CrossRef]
- Gruber, J. Physical activity and self-esteem development in children: A meta-analysis. In Effects of Physical Activity on Children; Stull, G., Eckern, H., Eds.; Human Kinetics: Champaign, IL, USA, 1986; pp. 330–348. [Google Scholar]
- Alfermann, D.; Stoll, O. Effects of physical exercise on self-concept and well-being. Int. J. Sport Psychol. 2000, 31, 47–65. [Google Scholar]
- Guinn, B.; Semper, T.; Jorgensen, L. Mexican American female adolescent self-esteem: The effect of body image, exercise behaviour and body fatness. Hispanic J. Behav. Sci. 1997, 19, 517–526. [Google Scholar] [CrossRef]
- Calfas, K.J.; Taylor, W.C. Effects of physical activity on psychological variables in adolescents. Pediatric Exerc. Sci. 1994, 6, 406–423. [Google Scholar] [CrossRef]
- Sonstroem, R.J.; Harlow, L.L.; Josephs, L. Exercise and self-esteem: Validity of model expansion and exercise associations. J. Sport Exerc. Psychol. 1994, 16, 29–42. [Google Scholar] [CrossRef]
- Barton, J.; Griffin, M.; Pretty, J. Exercise-, nature-and socially interactive-based initiatives improve mood and self-esteem in the clinical population. Perspect Public Health 2012, 132, 89–96. [Google Scholar] [CrossRef]
- Legrand, F.D. Effects of exercise on physical self-concept, global self-esteem, and depression in women of low socioeconomic status with elevated depressive symptoms. J. Sport Exerc. 2014, 36, 357–365. [Google Scholar] [CrossRef]
- Cañabate, D.; Martínez, G.; Rodríguez, D.; Colomer, J. Analysing Emotions and Social Skills in Physical Education. Sustainability 2018, 10, 1585. [Google Scholar] [CrossRef] [Green Version]
- Melzer, D.; Lan, T.Y.; Guralnik, J.M. The predictive validity for mortality of the index of mobility-related limitation–Results from the EPESE Study. Age Ageing 2003, 32, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Verbrugge, L.M.; Jette, A.M. The disablement process. Soc. Sci. Med. 1994, 38, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Peeters, G.; Lips, P.; Brown, W.J. Changes in physical functioning over 6 years in older women: Effects of sitting time and physical activity. Eur. J. Ageing 2014, 11, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, B.K.; Read, J.G. Gender disparities in adult health: An examination of three measures of morbidity. J. Health Soc. Behav. 2006, 47, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Montez, J.K. The socioeconomic origins of physical functioning among older U.S. adults. Adv. Life Course Res. 2013, 18, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Meader, N.; King, K.; Moe-Byrne, T.; Wright, K.; Graham, H.; Petticrew, M.; Power, C.; White, M.; Sowden, A.J. A systematic review on the clustering and co-occurrence of multiple risk behaviours. BMC Public Health 2016, 16, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, L.; Stafford, M.; Cooper, R.; Hardy, R.; Richards, M.; Kuh, D. Lifetime socioeconomic inequalities in physical and cognitive aging. Am. J. Public Health 2013, 103, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Astell-Burt, T. Neighborhood socioeconomic circumstances and the co-occurrence of unhealthy lifestyles: Evidence from 206,457 Australians in the 45 and up study. PLoS ONE 2013, 8, e72643. [Google Scholar] [CrossRef]
- Strand, B.H.; Cooper, R.; Hardy, R.; Kuh, D.; Guralnik, J. Lifelong socioeconomic position and physical performance in midlife: Results from the British 1946 birth cohort. Eur. J. Epidemiol. 2011, 26, 475–483. [Google Scholar] [CrossRef]
- Broese van Groenou, M.I.; Deeg, D.J.; Penninx, B.W. Income differentials in functional disability in old age: Relative risks of onset, recovery, decline, attrition and mortality. Aging Clin. Exp. Res. 2003, 15, 174–183. [Google Scholar] [CrossRef]
- Freedman, V.A.; Martin, L.G.; Schoeni, R.F.; Cornman, J.C. Declines in late-life disability: The role of early- and mid-life factors. Soc. Sci. Med. 2008, 66, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Bernaards, C.M.; Twisk, J.W.; Van Mechelen, W.; Snel, J.; Kemper, H.C. A longitudinal study on smoking in relationship to fitness and heart rate response. Med. Sci. Sports Exerc. 2003, 35, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Leyk, D.; Ruther, T.; Witzki, A.; Sievert, A.; Moedl, A.; Blettner, M.; Hackfort, D.; Löllgen, H. Physical fitness, weight, smoking, and exercise patterns in young adults. Dtsch. Arztebl. Int. 2012, 109, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Rapuri, P.B.; Gallagher, J.C.; Smith, L.M. Smoking is a risk factor for decreased physical performance in elderly women. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Strand, B.H.; Mishra, G.; Kuh, D.; Guralnik, J.M.; Patel, K.V. Smoking history and physical performance in midlife: Results from the British 1946 birth cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 142–149. [Google Scholar] [CrossRef]
- Maraldi, C.; Harris, T.B.; Newman, A.B.; Kritchevsky, S.B.; Pahor, M.; Koster, A.; Satterfield, S.; Ayonayon, H.N.; Fellin, R.; Volpato, S. Moderate alcohol intake and risk of functional decline: The health, aging, and body composition study. J. Am. Geriatr. Soc. 2009, 57, 1767–1775. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.H.; Bhatti, S.K.; Bajwa, A.; DiNicolantonio, J.J.; Lavie, C.J. Alcohol and cardiovascular health: The dose makes the poison…or the remedy. Mayo Clin. Proc. 2014, 89, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Lafortune, L.; Martin, S.; Kelly, S.; Kuhn, I.; Remes, O.; Cowan, A.; Brayne, C. Behavioural risk factors in mid-life associated with successful ageing, disability, dementia and frailty in later life: A rapid systematic review. PLoS ONE 2016, 11, e0144405. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roychowdhury, D. Using Physical Activity to Enhance Health Outcomes Across the Life Span. J. Funct. Morphol. Kinesiol. 2020, 5, 2. https://doi.org/10.3390/jfmk5010002
Roychowdhury D. Using Physical Activity to Enhance Health Outcomes Across the Life Span. Journal of Functional Morphology and Kinesiology. 2020; 5(1):2. https://doi.org/10.3390/jfmk5010002
Chicago/Turabian StyleRoychowdhury, Dev. 2020. "Using Physical Activity to Enhance Health Outcomes Across the Life Span" Journal of Functional Morphology and Kinesiology 5, no. 1: 2. https://doi.org/10.3390/jfmk5010002
APA StyleRoychowdhury, D. (2020). Using Physical Activity to Enhance Health Outcomes Across the Life Span. Journal of Functional Morphology and Kinesiology, 5(1), 2. https://doi.org/10.3390/jfmk5010002