Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.3. Instruments
2.4. Load Determination
2.5. Dynamic Force Variables
2.6. Determination of Biacromial Distance (BAD)
2.7. Statistics
3. Results
4. Discussion
5. Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Paralympic Comitê (IPC). Sports. Disponível em. Available online: https://www.paralympic.org/powerlifting (accessed on 5 October 2018).
- Dos Santos, M.D.M.; Aidar, F.J.; de Souza, R.F.; Dos Santos, J.L.; de Mello, A.D.S.; Neiva, H.P.; Marinho, D.A.; Marques, M.C. Does the Grip Width Affect the Bench Press Performance of Paralympic Powerlifters? Int. J. Sports Physiol. Perform. 2020, 15, 1252–1259. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Mean velocity vs. mean propulsive velocity vs. peak velocity: Which variable determines bench press relative load with higher reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Winckler, C.; Santos, W.L.; Kobal, R.; McGuigan, M. Load-Velocity Relationship in National Paralympic Powerlifters: A Case Study. Int. J. Sports Physiol. Perform. 2018, 14, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Mo, D.A.; Scott, S.; Andersen, V. The effects of bench press variations in competitive athletes on muscle activity and performance. J. Hum. Kinet. 2017, 57, 61–71. [Google Scholar] [CrossRef] [Green Version]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Van den Tillaar, R.; Ball, N. Validity and Reliability of Kinematics Measured with PUSH Band vs. Linear Encoder in Bench Press and Push-Ups. Sports 2019, 7, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, G.D.C.T.; Galvão, L.; Bottaro, M.; Mota, J.F.; Pimentel, G.D.; Gentil, P. Effects of placebo on bench throw performance of Paralympic weightlifting athletes: A pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Moras, G.; Rodríguez-Jiménez, S.; Busquets, A.; Tous-Fajardo, J.; Pozzo, M.; Mujika, I. A metronome for controlling the mean velocity during the bench press exercise. J. Strength Cond. Res. 2009, 23, 926–931. [Google Scholar] [CrossRef]
- Gomo, O.; van den Tillaar, R. The effects of grip width on sticking region in bench press. J. Sports Sci. 2016, 34, 232–238. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Moreno, M.R.; Risso, F.G.; Liu, T.M.; Stage, A.A.; Davis, D.L. An investigation of the mechanics and sticking region of a one-repetition maximum close-grip bench press versus the traditional bench press. Sports 2017, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Madsen, N.; McLaughlin, T. Kinematic factors influencing performance and injury risk in the bench press exercise. Med. Sci. Sports Exerc. 1984, 16, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.L.; Evans, S.A.; Weir, J.P.; Housh, T.J.; Johnson, G.O. The effect of grip width on bench press performance. Int. J. Sport Biomech. 1992, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Willick, S.E.; Cushman, D.M.; Blauwet, C.A.; Emery, C.; Webborn, N.; Derman, W.; Schwellnus, M.; Stomphorst, J.; van de Vliet, P. The epidemiology of injuries in powerlifting at the London 2012 Paralympic Games: An analysis of 1411 athlete-days. Scand. J. Med. Sci. Sport 2016, 26, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- Derman, W.; Runciman, P.; Schwellnus, M.; Jordaan, E.; Blauwet, C.; Webborn, N.; Lexell, J.; van de Vliet, P.; Tuakli-Wosornu, Y.; Kissic, J.; et al. High precompetition injury rate dominates the injury profile at the Rio 2016 Summer Paralympic Games: A prospective cohort study of 51,198 athlete days. Br. J. Sports Med. 2018, 52, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Soares Freitas Sampaio, C.R.; Aidar, F.J.; Ferreira, A.R.P.; Santos, J.L.D.; Marçal, A.C.; Matos, D.G.; Souza, R.F.; Moreira, O.C.; Guerra, I.; Fernandes Filho, J.; et al. Can Creatine Supplementation Interfere with Muscle Strength and Fatigue in Brazilian National Level Paralympic Powerlifting? Nutrients 2020, 12, 2492. [Google Scholar] [CrossRef]
- Santos, W.Y.H.D.; Aidar, F.J.; Matos, D.G.; van den Tillaar, R.; Marçal, A.C.; Lobo, L.F.; Marcucci-Barbosa, L.S.; Machado, S.D.C.; Almeida-Neto, P.F.; Garrido, N.D.; et al. Int Physiological and Biochemical Evaluation of Different Types of Recovery in National Level Paralympic Powerlifting. J. Environ. Res. Public Health 2021, 18, 5155. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.; Weidman, D. Analysis of USA Powerlifting Federation Data from 1 January 2012–11 June 2016. J. Strength Cond. Res. 2018, 32, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Teles, L.J.L.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Almeida-Neto, P.F.; Neves, E.B.; Moreira, O.C.; Ribeiro Neto, F.; Garrido, N.D.; Vilaça-Alves, J.; et al. Static and Dynamic Strength Indicators in Paralympic Power-Lifters with and without Spinal Cord Injury. Int. J. Environ. Res. Public Health 2021, 18, 5907. [Google Scholar] [CrossRef]
- De Aquino Resende, M.; Aidar, F.J.; Vasconcelos Resende, R.B.; Reis, G.C.; de Oliveira Barros, L.; de Matos, D.G.; Marçal, A.C.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; Merino-Fernández, M.; et al. Are Strength Indicators and Skin Temperature Affected by the Type of Warm-Up in Paralympic Powerlifting Athletes? Healthcare 2021, 9, 923. [Google Scholar] [CrossRef]
- Fraga, G.S.; Aidar, F.J.; de Matos, D.G.; Marçal, A.C.; Van den Tillaar, R.; Cabral, B.T.; Reis, V.M. Effects of Ibuprofen Intake in Muscle Damage, Body Temperature and Muscle Power in Paralympic Powerlifting Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5157. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Arjol-Serrano, J.L.; Mendez-Villanueva, A. Determinants, reliability, and usefulness of a bench press repeated power ability test in young basketball players. J. Strength Cond. Res. 2014, 28, 126–133. [Google Scholar] [CrossRef]
- Aidar, F.J.; Clemente, F.M.; Matos, D.G.; Marçal, A.C.; de Souza, R.F.; Moreira, O.C.; Almeida-Neto, P.F.; Vilaça-Alves, J.; Garrido, N.D.; Dos Santos, J.L.; et al. Evaluation of Strength and Muscle Activation Indicators in Sticking Point Region of National-Level Paralympic Powerlifting Athletes. J. Funct. Morphol. Kinesiol. 2021, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Pérez-Castilla, A.; Villar Macias, F.J.; Latorre-Román, P.Á.; Párraga, J.A.; García-Pinillos, F. Differences in the one-repetition maximum and load-velocity profile between the flat and arched bench press in competitive powerlifters. Sports Biomech. 2021, 20, 261–273. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Jaric, S.; Padial, P.; Feriche, B. Force-velocity relationship of upper-body muscles: Traditional vs. ballistic bench press. J. Appl. Biomech. 2016, 32, 178–185. [Google Scholar] [CrossRef]
- Clemons, J.M.; Aaron, C. Effect of grip width on the myoelectric activity of the prime movers in the bench press. J. Strength Cond. Res. 1997, 11, 82–87. [Google Scholar]
- Cohen, J. Statistics a power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Jiménez-Alonso, A.; Cepero, M.; Miras-Moreno, S.; Rojas, F.J.; García-Ramos, A. Velocity Performance Feedback During Ballistic Training: Which Is the Optimal Frequency of Feedback Administration? Mot. Control 2020, 25, 19–32. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Haff, G.G.; Jiménez-Reyes, P.; Pérez-Castilla, A. Assessment of Upper-Body Ballistic Performance Through the Bench Press Throw Exercise: Which Velocity Outcome Provides the Highest Reliability? J. Strength Cond. Res. 2018, 32, 2701–2707. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S. Force-velocity relationship of muscles performing multi-joint maximumperformance tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar]
- Sreckovic, S.; Cuk, I.; Djuric, S.; Nedeljkovic, A.; Mirkov, D.; Jaric, S. Evaluation of force–velocity and power–velocity relationship of arm muscles. Eur. J. Appl. Physiol. 2015, 115, 1779–1787. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; McGuigan, M.R. Power output in traditional and ballistic bench press in elite athletes: Influence of training background. J. Sports Sci. 2018, 37, 277–284. [Google Scholar] [CrossRef]
- Loturco, I.; Kobal, R.; Moraes, J.E.; Kitamura, K.; Cal Abad, C.C.; Pereira, L.A.; Nakamura, F.Y. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach. J. Strength Cond. Res. 2017, 31, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Hakkinen, K.; Pakarinen, A.; Alen, M.; Kauhanen, H.; Komi, P.V. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J. Appl. Physiol. 1988, 65, 2406–2412. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1-biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-López, M.; Marchante, D.; Cano-Ruiz, M.; López-Chicharro, J.; Balsalobre-Fernández, C. Load, force and power-velocity relationships in the prone pull-up exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1249–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jidovtseff, B.; Harris, N.K.; Crielaard, J.M.; Cronin, J.B. Using the load-velocity relationship for 1RM prediction. J. Strength Cond. Res. 2011, 25, 267–270. [Google Scholar] [CrossRef]
(Mean ± SD) | |
---|---|
Age (years) | 25.40 ± 3.30 |
Body Mass (Kg) | 70.30 ± 12.15 |
Experience (years) | 2.45 ± 0.21 |
Grip width 1 × Biacromial (cm) | 42.83 ± 12.84 |
Pick up width 1.3 × Biacromial (cm) | 55.68 ± 16.70 |
Catch width 1.5 × Biacromial (cm) | 63.20 ± 18.96 |
1 RM bench press test (Kg) | 117.40 ± 23.37 * |
1 RM/body weight | 1.67 ± 0.28 ** |
BAD 1× (A) X ± SD (CI 95%) | BAD 1.3× (B) X ± SD (CI 95%) | BAD 1.5× (C) X ± SD (CI 95%) | A vs. B | A vs. C | B vs. C | p | η2p | ||
---|---|---|---|---|---|---|---|---|---|
30% RM | VA (m/s) VAP (m/s) VP (m/s) | 1.16 ± 0.14 (1.07–1.26) 1.59 ± 0.31 (1.44–1.74) 1.63 ± 0.22 (1.49–1.72) | 1.00 ± 0.17 (0.90–1.09) 1.55 ± 0.31 (1.40–1.70) 1.73 ± 0.24 (1.59–1.86) | 1.06 ± 0.09 (0.97–1.16) 1.52 ± 0.16 (1.37–1.67) 1.70 ± 0.08 (1.57–1.84) | p = 0.04 * d = 0.20 p = 0.92 d = 0.17 p = 0.55 d = 0.41 | p = 0.31 d = 0.84 p = 0.77 d = 0.48 p = 0.72 d = 0.43 | p = 0.58 d = 0.48 p = 0.95 d = 0.12 p = 0.96 d = 0.14 | 0.04 0.77 0.77 | 0.20 # 0.23 # 0.23 |
50% RM | VA (m/s) VAP (m/s) VP (m/s) | 0.84 ± 0.10 (0.79–0.88) 1.00 ± 0.09 (0.92–1.08) 1.19 ± 0.07 (1.14–1.24) | 0.81 ± 0.02 (0.76–0.85) 1.06 ± 0.11 (0.98–1.14) 1.26 ± 0.06 (1.20–1.31) | 0.78 ± 0.05 (0.73–0.82) 1.00 ± 0.13 (0.92–1.08) 1.25 ± 0.08 (1.20–1.30) | p = 0.65 d = 0.39 p = 0.55 d = 0.54 p = 0.17 d = 0.95 | p = 0.18 d = 0.73 p = 0.99 d = 0.04 p = 0.25 d = 0.073 | p = 0.63 d = 0.71 p = 0.50 d = 0.49 p = 0.98 d = 0.10 | 0.18 0.17 0.24 | 0.34 ## 0.42 ## 0.34 ## |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, M.D.M.; Aidar, F.J.; Alejo, A.A.; de Matos, D.G.; de Souza, R.F.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Nikolaidis, P.T.; Knechtle, B.; Clemente, F.M.; et al. Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting. J. Funct. Morphol. Kinesiol. 2021, 6, 86. https://doi.org/10.3390/jfmk6040086
dos Santos MDM, Aidar FJ, Alejo AA, de Matos DG, de Souza RF, de Almeida-Neto PF, de Araújo Tinoco Cabral BG, Nikolaidis PT, Knechtle B, Clemente FM, et al. Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting. Journal of Functional Morphology and Kinesiology. 2021; 6(4):86. https://doi.org/10.3390/jfmk6040086
Chicago/Turabian Styledos Santos, Marcelo Danilllo Matos, Felipe J. Aidar, Andres Armas Alejo, Dihogo Gama de Matos, Raphael Fabricio de Souza, Paulo Francisco de Almeida-Neto, Breno Guilherme de Araújo Tinoco Cabral, Pantelis Theo Nikolaidis, Beat Knechtle, Filipe Manuel Clemente, and et al. 2021. "Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting" Journal of Functional Morphology and Kinesiology 6, no. 4: 86. https://doi.org/10.3390/jfmk6040086
APA Styledos Santos, M. D. M., Aidar, F. J., Alejo, A. A., de Matos, D. G., de Souza, R. F., de Almeida-Neto, P. F., de Araújo Tinoco Cabral, B. G., Nikolaidis, P. T., Knechtle, B., Clemente, F. M., Murawska-Ciałowicz, E., & Badicu, G. (2021). Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting. Journal of Functional Morphology and Kinesiology, 6(4), 86. https://doi.org/10.3390/jfmk6040086