The Association between Multidirectional Speed Performance, Dynamic Balance and Chronological Age in Young Soccer Players
Abstract
:1. Introduction
1.1. Functional Performance in Soccer Players
1.2. Speed Performance in Soccer Players
1.3. Balance Performance in Soccer Players
1.4. Aims
2. Materials and Methods
2.1. Participants
2.2. Test Procedures
2.2.1. Y-Balance Test (YBT)
2.2.2. Lower Extremity Functional Test (LEFT)
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Association Analysis between Functional Performance Variables and Chronological Age
3.3. Multiple Regression Analysis between Functional Performance Variables and Chronological Age
4. Discussion
4.1. Association between Speed and Balance
4.2. Association between Speed and Age
4.3. Speed Performance Prediction
4.4. Future Perspectives
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Read, P.J.; Oliver, J.L.; Myer, G.D.; de Ste Croix, M.B.A.; Lloyd, R.S. The Effects of Maturation on Measures of Asymmetry During Neuromuscular Control Tests in Elite Male Youth Soccer Players. Pediatr. Exerc. Sci. 2018, 30, 168–175. [Google Scholar] [CrossRef]
- Gstöttner, M.; Neher, A.; Scholtz, A.; Millonig, M.; Lembert, S.; Raschner, C. Balance Ability and Muscle Response of the Preferred and Nonpreferred Leg in Soccer Players. Motor Control 2009, 13, 218–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M. The Relationship Between Dynamic Stability and Multidirectional Speed. J. Strength Cond. Res. 2016, 30, 3033–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavillon, T.; Tourny, C.; Ben Aabderrahman, A.; Salhi, I.; Zouita, S.; Rouissi, M.; Hackney, A.C.; Granacher, U.; Zouhal, H. Sprint and jump performances in highly trained young soccer players of different chronological age: Effects of linear VS. CHANGE–OF–DIRECTION sprint training. J. Exerc. Sci. Fit. 2021, 19, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Huertas, F.; Ballester, R.; Gines, H.J.; Hamidi, A.K.; Moratal, C.; Lupiáñez, J. Relative Age Effect in the Sport Environment. Role of Physical Fitness and Cognitive Function in Youth Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 2837. [Google Scholar] [CrossRef] [Green Version]
- Lawrance, S.; Killian, C.; Rundquist, P.; Jenkins, W. Measures of Limb Symmetry used for Injury Risk Identification: What is Normal? Br. J. Sports Med. 2016, 51, 347. [Google Scholar] [CrossRef]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; Niemuth, P.; Rauh, M.J. Lower Extremity Functional Tests and Risk of Injury in Division III Collegiate Athletes. Int. J. Sports Phys. Ther. 2013, 8, 216–227. [Google Scholar] [PubMed]
- Butler, R.J.; Lehr, M.E.; Fink, M.L.; Kiesel, K.B.; Plisky, P.J. Dynamic balance performance and noncontact lower extremity injury in college football players: An initial study. Sports Health 2013, 5, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Wilke, C.; Scinicarelli, G.; Schoser, D.S.; Offerhaus, C.; Froböse, I. Limb symmetry index and pre-injury performance level after anterior cruciate ligament reconstruction: A case report on a female gymnast. Sports Orthop. Traumatol. 2021; in press. [Google Scholar] [CrossRef]
- Hammami, R.; Granacher, U.; Pizzolato, F.; Chaouachi, M.; Chtara, M. Associations between Change of Direction, Balance, Speed, and Muscle Power in Prepubescent Soccer Players. J. Athl. Enhanc. 2017, 6, 2. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Rosseti, M.; Carpes, F.P.; Bishop, C. Do asymmetry scores influence speed and power performance in elite female soccer players? Biol. Sport 2019, 36, 209–216. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Fransen, J.; Bennett, K.J.; Woods, C.T.; French-Collier, N.; Deprez, D.; Vaeyens, R.; Lenoir, M. Modelling age-related changes in motor competence and physical fitness in high-level youth soccer players: Implications for talent identification and development. Sci. Med. 2017, 1, 203–208. [Google Scholar] [CrossRef]
- Ateş, B. Age-related Effects of Speed and Power on Agility Performance of Young Soccer Players. Int. J. Educ. Learn 2018, 7, 93. [Google Scholar] [CrossRef]
- Vaisman, A.; Guiloff, R.; Rojas, J.; Delgado, I.; Figueroa, D.; Calvo, R. Lower Limb Symmetry: Comparison of Muscular Power Between Dominant and Nondominant Legs in Healthy Young Adults Associated with Single-Leg-Dominant Sports. Orthop. J. Sports Med. 2017, 5, 12. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Schwiertz, G.; Brueckner, D.; Kiss, R.; Panzer, S. Limb Differences in Unipedal Balance Performance in Young Male Soccer Players with Different Ages. Sports 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Barone, R.; Macaluso, F.; Traina, M.; Leonardi, V.; Farina, F.; Di Felice, V. Soccer players have a better standing balance in nondominant one-legged stance. Open Access J. Sports Med. 2010, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- John, C.; Rahlf, A.L.; Hamacher, D.; Zech, A. Influence of biological maturity on static and dynamic postural control among male youth soccer players. Gait Posture 2019, 68, 18–22. [Google Scholar] [CrossRef]
- Bigoni, M.; Turati, M.; Gandolla, M. Balance in young male soccer players: Dominant versus non-dominant leg. Sport Sci. Health. 2017, 13, 253–258. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.; Jeffriess, M.; Luczo, T. Dynamic stability as measured by time to stabilization does not relate to change-of direction speed. Facta Univ. Ser. Phys. Educ. Sport 2016, 14, 179–191. [Google Scholar]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Scinicarelli, G.; Trofenik, M.; Froböse, I.; Wilke, C. The Reliability of Common Functional Performance Tests within an Experimental Test Battery for the Lower Extremities. Sports 2021, 9, 100. [Google Scholar] [CrossRef]
- Keller, M.; Kurz, E.; Schmidtlein, O.; Welsch, G.; Anders, C. Return to Activity Algorithmus [Interdisciplinary Assessment Criteria for Rehabilitation after Injuries of the Lower Extremity: A Function-Based Return to Activity Algorithm]. Sportverletz. Sportschaden 2016, 30, 38–49. [Google Scholar] [CrossRef]
- Moser, N.; Bloch, H. Return-to-Competition: Testmanual zur Beurteilung der Spielfähigkeit nach Ruptur des Vorderen Kreuzbands; Version 1.0/2015-11; Ihre Gesetzliche Unfallversicherung (VBG): Hamburg, Germany, 2015. [Google Scholar]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Hébert-Losier, K. Clinical Implications of Hand Position and Lower Limb Length Measurement Method on Y-Balance Test Scores and Interpretations. J. Athl. Train 2017, 52, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the Lower Limb: The Calculation Conundrum in Strength Training and Conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.; Pfeiffer, T.; Lambert, M.; Brozat, B.; Lachmann, D.; Shafizadeh, S.; Akoto, R. Side Differences Regarding the Limb Symmetry Index in Healthy Professional Athletes. Int. J. Sports Med. 2020, 41, 729–735. [Google Scholar] [CrossRef]
- Gokeler, A.; Welling, W.; Benjaminse, A.; Lemmink, K.; Seil, R.; Zaffagnini, S. A critical analysis of limb symmetry indices of hop tests in athletes after anterior cruciate ligament reconstruction: A case control study. Orthop. Traumatol. Surg. Res. 2017, 103, 947–951. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2017, 36, 1135–1144. [Google Scholar] [CrossRef]
- Gonell, A.C.; Romero, J.A.P.; Soler, L.M. Relationship Between the Y Balance Test Scores and Soft Tissue Injury Incidence in a Soccer Team. Int. J. Sports Phys. Ther. 2015, 10, 955–966. [Google Scholar] [PubMed]
- Tabor, M.A.; Davies, G.J.; Kernozek, T.W.; Negrete, R.J.; Hudson, V. A Multicenter Study of the Test–Retest Reliability of the Lower Extremity Functional Test. J. Sport Rehabil. 2002, 11, 190–201. [Google Scholar] [CrossRef]
- Fousekis, K.; Τsepis, E.; Vagenas, G. Lower limb strength in professional soccer players: Profile, asymmetry, and training age. J. Sports Sci. Med. 2010, 9, 364–373. [Google Scholar] [PubMed]
- Rouissi, M.; Chtara, M.; Owen, A.; Burnett, A.; Chamari, K. Change of direction ability in young elite soccer players: Determining factors vary with angle variation. J. Sports Med. Phys. Fit. 2017, 57, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Cressey, E.M.; West, C.A.; Tiberio, D.P.; Kraemer, W.J.; Maresh, C.M. The effects of ten weeks of lower-body unstable surface training on markers of athletic performance. J. Strength Cond. Res. 2007, 21, 561–567. [Google Scholar] [CrossRef]
- Erkmen, N.; Taskin, H.; Sanioglu, A.; Kaplan, T.; Bastürk, D. Relationships between Balance and Functional Performance in Football Players. J. Hum. Kinet 2010, 26, 21–29. [Google Scholar] [CrossRef]
- Karahan, M. Age-related Physical Performance Differences in Male Soccer Players. Anthropologist 2016, 24, 724–729. [Google Scholar] [CrossRef]
- Mendez-Villanueva, A.; Buchheit, M.; Kuitunen, S.; Douglas, A.; Peltola, E.; Bourdon, P. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players. J. Sports Sci. 2011, 29, 477–484. [Google Scholar] [CrossRef]
- Fortin-Guichard, D.; Huberts, I.; Sanders, J.; van Elk, R.; Mann, D.L.; Savelsbergh, G.J.P. Predictors of selection into an elite level youth football academy: A longitudinal study. J. Sports Sci. 2022, 40, 984–999. [Google Scholar] [CrossRef]
- Valente-dos-Santos, J.; Coelho e Silva, M.J.; Vaz, V.; Figueiredo, A.J.; Capranica, L.; Sherar, L.B.; Malina, R.M. Maturity-associated variation in change of direction and dribbling speed in early pubertal years and 5-year developmental changes in young soccer players. J. Sports Med. Phys. Fit. 2014, 54, 307–316. [Google Scholar]
- Sariati, D.; Hammami, R.; Chtara, M.; Zagatto, A.; Boullosa, D.; Clark, C.; Hackney, A.C.; Granacher, U.; Souissi, N.; Zouhal, H. Change-of-Direction Performance in Elite Soccer Players: Preliminary Analysis According to Their Playing Positions. Int. J. Environ. Res. Public Health 2020, 17, 8360. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Ribeiro, B.; Aroso, J.; Cumming, S.P. Characteristics of youth soccer players aged 13-15 years classified by skill level. Br. J. Sports Med. 2007, 41, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radnor, J.M.; Staines, J.; Bevan, J.; Cumming, S.P.; Kelly, A.L.; Lloyd, R.S.; Oliver, J.L. Maturity Has a Greater Association than Relative Age with Physical Performance in English Male Academy Soccer Players. Sports 2021, 9, 171. [Google Scholar] [CrossRef]
- França, C.; Gouveia, É.; Caldeira, R.; Marques, A.; Martins, J.; Lopes, H.; Henriques, R.; Ihle, A. Speed and Agility Predictors among Adolescent Male Football Players. Int. J. Environ. Res. Public Health 2022, 19, 2856. [Google Scholar] [CrossRef] [PubMed]
- Bolckmans, S.; Starkes, J.L.; Towlson, C.; Barnes, C.; Parkin, G.; Helsen, W.F. Leveling the Playing Field: A New Proposed Method to Address Relative Age- and Maturity-Related Bias in UK Male Academy Soccer Players. Front. Sports Act. Living 2022, 4, 847438. [Google Scholar] [CrossRef] [PubMed]
Age Groups (N) | Mass (kg ± SD) | Height (m ± SD) | BMI (kg/m2 ± SD) | Limb Length Dom/N-Dom (cm± SD) |
---|---|---|---|---|
U11 (15) 95% CI COV (%) | 37.2 ± 5.8 ±0.9 13.6% | 1.4 ± 0.5 N.A. 4.1% | 18.4 ± 2.5 ±0.2 8.0% | 81.4 ± 5.4/81.8 ± 5.5 ±0.8/±0.8 5.4%/5.5% |
U12 (18) 95% CI COV (%) | 39.1 ± 4.8 ±0.6 9.8% | 1.5 ± 0.5 N.A. 3.4% | 18.9 ± 2.3 ±0.2 6.6% | 81.2 ± 4.4/81.6 ± 3.3 ±0.5/±0.5 4.1%/4.0% |
U13 (19) 95% CI COV (%) | 49.5 ± 9.6 ±1.3 17.5% | 1.6 ± 0.5 N.A. 5.9% | 19.7 ± 3.2 ±0.3 11.2 | 89.3 ± 7.1/89.2 ± 6.9 ±0.9/±0.9 6.8%/6.8% |
U14 (19) 95% CI COV (%) | 57.6 ± 9.3 ±0.3 9.1% | 1.7 ± 0.5 N.A. 5.2% | 21.2 ± 2.9 ±1.3 14.6% | 95.3 ± 5.8/95.5 ± 6.2 ±0.7/±0.8 5.0%/5.4% |
U15 (19) 95% CI COV (%) | 64.4 ± 9.8 ±1.5 15.3% | 1.7 ± 0.5 N.A. 4.4% | 21.8 ± 2.9 ±0.3 9.0% | 97.4 ± 5.7/97.5 ± 5.8 ±0.7/±0.7 4.8%/4.9% |
U16 (21) 95% CI COV (%) | 68.9 ± 9.9 ±1.3 8.7% | 1.8 ± 0.5 N.A. 4.7% | 22.8 ± 2.9 ±0.3 8.7% | 98.3 ± 7.5/98.5 ± 7.6 ±0.9/±1.0 6.6%/6.6% |
U17 (18) 95% CI COV (%) | 72.3 ± 8.5 ±1.2 10.4% | 1.8 ± 0.5 N.A. 3.1% | 23.8 ± 2.7 ±0.3 7.0% | 99.5 ± 5.2/99.5 ± 5.1 ±0.6/±0.6 4.1%/4.1% |
U19 (17) 95% CI COV (%) | 73.9 ± 9.9 ±0.4 9.8% | 1.8 ± 0.5 N.A. 3.9% | 23.3 ± 3.3 ±0.4 9.8% | 101.2 ± 6.5/100.1 ± 6.7 ±0.9/±0.9 5.4%/5.6% |
Total (146) 95% CI COV (%) | 57.9 ± 8.5 ±0.9 11.8% | 1.8 ± 0.5 N.A. 4.3% | 21.2 ± 2.8 ±0.4 9.4% | 92.9 ± 5.9/92.9 ± 5.9 ±0.8/±0.8 5.3%/5.4% |
Age Groups | Dynamic Balance (YBT) | Multidirectional Speed (LEFT) | |
---|---|---|---|
Composite Score (CS, %) | Limb Symmetry Index (LSI, %) | Execution Time (s) | |
U11 Dom N-Dom | 84.0 ± 8.1 82.8 ± 6.7 | 101.8 ± 10.5 | 111.1 ± 15.7 |
U12 Dom N-Dom | 86.3 ± 5.2 88.8 ± 5.1 | 97.3 ± 6.8 | 102.4 ± 3.4 |
U13 Dom N-Dom | 84.0 ± 8.2 84.1 ± 5.7 | 99.8 ± 6.1 | 107.1 ± 8.4 |
U14 Dom N-Dom | 82.2 ± 4.6 83.2 ± 4.1 | 98.9 ± 3.0 | 98.6 ± 4.4 |
U15 Dom N-Dom | 83.5 ± 5.5 81.9 ± 5.8 | 102.1 ± 4.3 | 93.0 ± 4.2 |
U16 Dom N-Dom | 83.0 ± 4.9 83.9 ± 4.8 | 98.9 ± 3.9 | 92.4 ± 5.0 |
U17 Dom N-Dom | 83.3 ± 5.6 82.0 ± 4.7 | 101.7 ± 5.3 | 89.9 ± 3.6 |
U19 Dom N-Dom | 84.0 ± 5.0 83.9 ± 4.4 | 100.2 ± 4.5 | 92.0 ± 7.3 |
Pearson Correlation between Variables | ||||||||
---|---|---|---|---|---|---|---|---|
DBP | Chronological Age | |||||||
Dominant Leg (CS, %) | Non-Dominant Leg (CS, %) | Interlimb Symmetry (LSI, %) | (Years) | |||||
MDS(Time, S) | r | p-value | R | p-value | R | p-value | r | p-value |
−0.194 | 0.019 * | −0.060 | 0.469 | −0.167 | 0.044 * | −0.626 | 0.000 * | |
Chronological Age (Years) | −0.068 | 0.416 | −0.138 | 0.096 | 0.057 | 0.491 |
Model Summary | |||||||
R | R Square | Adjusted R Square | Std. Error of the Estimate | ||||
MDS | 0.669 | 0.447 | 0.436 | 7.5173 | |||
ANOVA—MDS | |||||||
Sum of square | df | Mean Square | F | Sig. | |||
Regression | 6494.960 | 3 | 2164.987 | 38.312 | <0.001 * | ||
Residual | 8024.288 | 142 | 58.509 | ||||
Total | 14519.248 | 145 | |||||
Coefficients—MDS | |||||||
Predictors | Unstandardized Coefficients | Standardized Coefficients | 95.0% CI for B | ||||
B | Std. Error | B | T | Sig. | Lower Bound | Upper Bound | |
Constant | 171.823 | 11.978 | 14.345 | <0.001 * | 148.144 | 195.501 | |
Chronological Age | −2.649 | 0.260 | −0.640 | −10.178 | <0.001 * | −3.164 | −2.135 |
DBP | −0.385 | 0.122 | −0.229 | −3.162 | 0.002 * | −0.626 | −0.144 |
Interlimb Balance Symmetry | −0.027 | 0.124 | −0.015 | −0.214 | 0.831 | −0.272 | 0.219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scinicarelli, G.; Offerhaus, C.; Feodoroff, B.; Froböse, I.; Wilke, C. The Association between Multidirectional Speed Performance, Dynamic Balance and Chronological Age in Young Soccer Players. J. Funct. Morphol. Kinesiol. 2022, 7, 41. https://doi.org/10.3390/jfmk7020041
Scinicarelli G, Offerhaus C, Feodoroff B, Froböse I, Wilke C. The Association between Multidirectional Speed Performance, Dynamic Balance and Chronological Age in Young Soccer Players. Journal of Functional Morphology and Kinesiology. 2022; 7(2):41. https://doi.org/10.3390/jfmk7020041
Chicago/Turabian StyleScinicarelli, Giordano, Christoph Offerhaus, Boris Feodoroff, Ingo Froböse, and Christiane Wilke. 2022. "The Association between Multidirectional Speed Performance, Dynamic Balance and Chronological Age in Young Soccer Players" Journal of Functional Morphology and Kinesiology 7, no. 2: 41. https://doi.org/10.3390/jfmk7020041
APA StyleScinicarelli, G., Offerhaus, C., Feodoroff, B., Froböse, I., & Wilke, C. (2022). The Association between Multidirectional Speed Performance, Dynamic Balance and Chronological Age in Young Soccer Players. Journal of Functional Morphology and Kinesiology, 7(2), 41. https://doi.org/10.3390/jfmk7020041