Serum TSH and Daily Physical Activity in a Cohort of Nonagenarians: Results from the Mugello Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Measures
2.3. Sedentary Time and Daily Physical Activity (PA) Assessment
2.4. Thyroid Function and Inflammatory Status
2.5. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Thyroid Hormones Correlations in the Whole Sample
3.3. Comparison according to TSH Tertile Membership
3.4. Thyroid Hormones Correlations and Comparison according to TSH Tertile Membership in Female Sub-Sample
3.5. Thyroid Hormones Correlations and Comparison according to TSH Tertile Membership in Male Sub-Sample
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowers, J.; Terrien, J.; Clerget-Froidevaux, M.; Gothié, J.D.; Rozing, M.P.; Westendorp, R.G.J.; Van Heemst, D.; Demeneix, B.A. Thyroid Hormone Signaling and Homeostasis During Aging. Endocr. Rev. 2013, 34, 556–589. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Ostan, R.; Mariotti, S.; Monti, D.; Vitale, G. The Aging Thyroid: A Reappraisal Within the Geroscience Integrated Perspective. Endocr. Rev. 2019, 40, 1250–1270. [Google Scholar] [CrossRef] [PubMed]
- Hoogendoorn, E.H.; Hermus, A.R.; de Vegt, F.; Ross, H.A.; Verbeek, A.L.; Kiemeney, L.A.; Swinkels, D.W.; Sweep, F.C.; Heijer, M.D. Thyroid Function and Prevalence of Anti-Thyroperoxidase Antibodies in a Population with Borderline Sufficient Iodine Intake: Influences of Age and Sex. Clin. Chem. 2006, 52, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Park, Y.J.; Kim, T.H.; Han, J.W.; Choi, S.H.; Lim, S.; Park, D.J.; Kim, K.W.; Jang, H.C. Lower-But-Normal Serum TSH level Is Associated with the Development or Progression of Cognitive Impairment in Elderly: Korean Longitudinal Study on Health and Aging (KLoSHA). J. Clin. Endocrinol. Metab. 2014, 99, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Shan, Z.; Teng, X.; Li, Y.; Teng, D.; Jin, Y.; Yu, X.; Fan, C.; Chong, W.; Yang, F.; et al. Influence of iodine on the reference interval of TSH and the optimal interval of TSH: Results of a follow-up study in areas with different iodine intakes. Clin. Endocrinol. 2008, 69, 136–141. [Google Scholar] [CrossRef]
- Chaker, L.; Korevaar, T.I.; Medici, M.; Uitterlinden, A.G.; Hofman, A.; Dehghan, A.; Franco, O.H.; Peeters, R.P. Thyroid Function Characteristics and Determinants: The Rotterdam Study. Thyroid 2016, 26, 1195–1204. [Google Scholar] [CrossRef]
- Boucai, L.; Surks, M.I. Reference limits of serum TSH and free T4 are significantly influenced by race and age in an urban outpatient medical practice. Clin. Endocrinol. 2009, 70, 788–793. [Google Scholar] [CrossRef]
- Lago-Sampedro, A.M.; Gutiérrez-Repiso, C.; Valdés, S.; Maldonado, C.; Colomo, N.; Almaraz, M.C.; Rubio-Martín, E.; Morcillo, S.; Esteva, I.; de Adana, M.S.R.; et al. Changes in thyroid function with age: Results from the Pizarra population-based longitudinal study. Int. J. Clin. Pract. 2015, 69, 577–587. [Google Scholar] [CrossRef]
- Bremner, A.P.; Feddema, P.; Leedman, P.J.; Brown, S.J.; Beilby, J.P.; Lim, E.M.; Wilson, S.G.; O’Leary, P.C.; Walsh, J.P. Age-related changes in thyroid function: A longitudinal study of a community-based cohort. J. Clin. Endocrinol. Metab. 2012, 97, 1554–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strich, D.; Karavani, G.; Edri, S.; Chay, C.; Gillis, D. Ft3 is Higher in Males than in Females and Decreases Over the Lifespan. Endocr. Pract. 2017, 23, 803–807. [Google Scholar] [CrossRef]
- Tabatabaie, V.; Surks, M.I. The aging thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Sell, M.A.; Schott, M.; Tharandt, L.; Cissewski, K.; Scherbaum, W.A.; Willenberg, H.S. Functional central hypothyroidism in the elderly. Aging Clin. Exp. Res. 2008, 20, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Waring, A.C.; Arnold, A.M.; Newman, A.B.; Bùzková, P.; Hirsch, C.; Cappola, A.R. Longitudinal changes in thyroid function in the oldest old and survival: The cardiovascular health study all-stars study. J. Clin. Endocrinol. Metab. 2012, 97, 3944–3950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotti, S.; Franceschi, C.; Cossarizza, A.; Pinchera, A. The aging thyroid. Endocr. Rev. 1995, 16, 686–715. [Google Scholar] [CrossRef]
- Strich, D.; Karavani, G.; Edri, S.; Gillis, D. TSH enhancement of FT4 to FT3 conversion is age dependent. Eur. J. Endocrinol. 2016, 175, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Cappola, A.R.; Arnold, A.M.; Wulczyn, K.; Carlson, M.; Robbins, J.; Psaty, B.M. Thyroid Function in the Euthyroid Range and Adverse Outcomes in Older Adults. J. Clin. Endocrinol. Metab. 2015, 100, 1088–1096. [Google Scholar] [CrossRef]
- Ceresini, G.; Marina, M.; Lauretani, F.; Maggio, M.; Bandinelli, S.; Ceda, G.P.; Ferrucci, L. Relationship Between Circulating Thyroid-Stimulating Hormone, Free Thyroxine, and Free Triiodothyronine Concentrations and 9-Year Mortality in Euthyroid Elderly Adults. J. Am. Geriatr. Soc. 2016, 64, 553–560. [Google Scholar] [CrossRef] [Green Version]
- van de Ven, A.C.; Netea-Maier, R.T.; de Vegt, F.; Ross, H.A.; Sweep, F.C.; Kiemeney, L.A.; Smit, J.W.; Hermus, A.R.; den Heijer, M. Associations between thyroid function and mortality: The influence of age. Eur. J. Endocrinol. 2014, 171, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Altay, S.; Onat, A.; Can, G.; Tusun, E.; Şimşek, B.; Kaya, A. High-normal thyroid-stimulating hormone in euthyroid subjects is associated with risk of mortality and composite disease endpoint only in women. Arch. Med. Sci. 2018, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Pereg, D.; Tirosh, A.; Elis, A.; Neuman, Y.; Mosseri, M.; Segev, D.; Lishner, M.; Hermoni, D. Mortality and Coronary Heart Disease in Euthyroid Patients. Am. J. Med. 2012, 125, 826.e7–826.e12. [Google Scholar] [CrossRef] [Green Version]
- Ogliari, G.; Smit, R.A.J.; van der Spoel, E.; Mari, D.; Torresani, E.; Felicetta, I.; Lucchi, T.A.; Rossi, P.D.; van Heemst, D.; de Craen, A.J.M.; et al. Thyroid Status and Mortality Risk in Older Adults with Normal Thyrotropin: Sex Differences in the Milan Geriatrics 75+ Cohort Study. J. Gerontol. Ser. A 2016, 72, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucai, L.; Hollowell, J.G.; Surks, M.I. An Approach for Development of Age-, Gender-, and Ethnicity-Specific Thyrotropin Reference Limits. Thyroid 2011, 21, 5–11. [Google Scholar] [CrossRef]
- Yeap, B.B.; Alfonso, H.; Hankey, G.J.; Flicker, L.; Golledge, J.; Norman, P.E.; Chubb, S.A.P. Higher free thyroxine levels are associated with all-cause mortality in euthyroid older men: The Health in Men Study. Eur. J. Endocrinol. 2013, 169, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, N.A.; van der Spoel, E.; Beekman, M.; Slagboom, P.E.; Blauw, G.J.; Gussekloo, J.; Westendorp, R.G.J.; van Heemst, D. Thyroid status and mortality in nonagenarians from long-lived families and the general population. Aging 2017, 9, 2223–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chang, Y.; Ryu, S.; Cho, J.; Lee, W.-Y.; Rhee, E.-J.; Kwon, M.-J.; Pastor-Barriuso, R.; Rampal, S.; Han, W.K.; et al. Thyroid Hormones and Mortality Risk in Euthyroid Individuals: The Kangbuk Samsung Health Study. J. Clin. Endocrinol. Metab. 2014, 99, 2467–2476. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Fernando-Watutantrige, S.; Maggi, S.; Noale, M.; Stubbs, B.; Incalzi, R.A.; Zambon, S.; Corti, M.C.; Perissinotto, E.; Crepaldi, G.; et al. Serum Thyroid-Stimulating Hormone Levels and Frailty in the Elderly: The Progetto Veneto Anziani Study. Rejuvenation Res. 2017, 20, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Leader, A.; Ayzenfeld, R.H.; Lishner, M.; Cohen, E.; Segev, D.; Hermoni, D. Thyrotropin Levels within the Lower Normal Range Are Associated with an Increased Risk of Hip Fractures in Euthyroid Women, but Not Men, over the Age of 65 Years. J. Clin. Endocrinol. Metab. 2014, 99, 2665–2673. [Google Scholar] [CrossRef] [Green Version]
- Ostan, R.; Monti, D.; Mari, D.; Arosio, B.; Gentilini, D.; Ferri, E.; Passarino, G.; De Rango, F.; D’Aquila, P.; Mariotti, S.; et al. Heterogeneity of Thyroid Function and Impact of Peripheral Thyroxine Deiodination in Centenarians and Semi-Supercentenarians: Association with Functional Status and Mortality. J. Gerontol. Ser. A 2018, 74, 802–810. [Google Scholar] [CrossRef]
- van den Beld, A.W.; Visser, T.J.; Feelders, R.A.; Grobbee, D.E.; Lamberts, S.W. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men. J. Clin. Endocrinol. Metab. 2005, 90, 6403–6409. [Google Scholar] [CrossRef] [Green Version]
- Di Iorio, A.; Paganelli, R.; Abate, M.; Barassi, G.; Ireland, A.; Macchi, C.; Molino-Lova, R.; Cecchi, F. Thyroid hormone signaling is associated with physical performance, muscle mass, and strength in a cohort of oldest-old: Results from the Mugello study. Geroscience 2021, 43, 1053–1064. [Google Scholar] [CrossRef]
- Ceresini, G.; Marina, M.; Lauretani, F.; Maggio, M.; Serra, M.F.; Meschi, T.; Bandinelli, S.; Ceda, G.P.; Ferrucci, L. Physical performance across the thyroid function values within the normal range in adult and older persons. Aging 2018, 31, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Abbatecola, A.M.; Provinciali, M.; Corsonello, A.; Bustacchini, S.; Manigrasso, L.; Cherubini, A.; Bernabei, R.; Lattanzio, F. Moving against frailty: Does physical activity matter? Biogerontology 2010, 11, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Atzmon, G.; Barzilai, N.; Hollowell, J.G.; Surks, M.I.; Gabriely, I. Extreme Longevity Is Associated with Increased Serum Thyrotropin. J. Clin. Endocrinol. Metab. 2009, 94, 1251–1254. [Google Scholar] [CrossRef] [Green Version]
- Molino-Lova, R.; Sofi, F.; Pasquini, G.; Gori, A.; Vannetti, F.; Abbate, R.; Gensini, G.F.; Macchi, C. The Mugello Study, a survey of nonagenarians living in Tuscany: Design, methods and participants’ general characteristics. Eur. J. Intern. Med. 2013, 24, 745–749. [Google Scholar] [CrossRef]
- Newman, A.B.; Siscovick, D.S.; Manolio, T.A.; Polak, J.; Fried, L.P.; Borhani, N.O.; Wolfson, S.K. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993, 88, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Calabró, M.A.; Welk, G.J.; Eisenmann, J.C. Validation of the SenseWear Pro Armband Algorithms in Children. Med. Sci. Sports Exerc. 2009, 41, 1714–1720. [Google Scholar] [CrossRef]
- Ridley, K.; Ainsworth, B.E.; Olds, T.S. Development of a Compendium of Energy Expenditures for Youth. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Rich, C.; Geraci, M.; Griffiths, L.; Sera, F.; Dezateux, C.; Cortina-Borja, M. Quality Control Methods in Accelerometer Data Processing: Defining Minimum Wear Time. PLoS ONE 2013, 8, e67206. [Google Scholar] [CrossRef]
- Schutz, Y.; Kyle, U.; Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int. J. Obes. 2002, 26, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Wennberg, P.; Boraxbekk, C.-J.; Wheeler, M.; Howard, B.; Dempsey, P.; Lambert, G.; Eikelis, N.; Larsen, R.; Sethi, P.; Occleston, J.; et al. Acute effects of breaking up prolonged sitting on fatigue and cognition: A pilot study. BMJ Open 2016, 6, e009630. [Google Scholar] [CrossRef] [Green Version]
- Sardinha, L.B.; Ekelund, U.; dos Santos, L.; Cyrino, E.; Silva, A.M.; Santos, D.A. Breaking-up sedentary time is associated with impairment in activities of daily living. Exp. Gerontol. 2015, 72, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Hackney, A.C.; Saeidi, A. The thyroid axis, prolactin, and exercise in humans. Curr. Opin. Endocr. Metab. Res. 2019, 9, 45–50. [Google Scholar] [CrossRef]
- Roa Dueñas, O.H.; Koolhaas, C.; Voortman, T.; Franco, O.H.; Ikram, M.A.; Peeters, R.P.; Chaker, L. Thyroid Function and Physical Activity: A Population-Based Cohort Study. Thyroid 2021, 31, 870–875. [Google Scholar] [CrossRef]
- Stel, V.S.; Smit, J.H.; Pluijm, S.; Visser, M.; Deeg, D.J.; Lips, P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J. Clin. Epidemiol. 2004, 57, 252–258. [Google Scholar] [CrossRef]
- Ravaglia, G.; Forti, P.; Maioli, F.; Pratelli, L.; Vettori, C.; Bastagli, L.; Mariani, E.; Facchini, A.; Cucinotta, D. Regular moderate intensity physical activity and blood concentrations of endogenous anabolic hormones and thyroid hormones in aging men. Mech. Ageing Dev. 2001, 122, 191–203. [Google Scholar] [CrossRef]
- Olivieri, A.; Andò, S.; Bagnasco, M.; Meringolo, D.; Mian, C.; Moleti, M.; Puxeddu, E.; Regalbuto, C.; Taccaliti, A.; Tanda, M.L.; et al. The iodine nutritional status in the Italian population: Data from the Italian National Observatory for Monitoring Iodine Prophylaxis (OSNAMI) (period 2015–2019). Am. J. Clin. Nutr. 2019, 110, 1265–1266. [Google Scholar] [CrossRef]
- Leko, M.B.; Gunjača, I.; Pleić, N.; Zemunik, T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int. J. Mol. Sci. 2021, 22, 6521. [Google Scholar] [CrossRef]
Characteristics | Whole Sample (N = 108) | Female Sub-Sample (n = 81) | Male Sub-Sample (n = 27) | Female vs. Male Sub-Sample p |
---|---|---|---|---|
Age (years) | 92.84 ± 3.18 (89–101) | 93.07 ± 3.30 (89–101) | 92.15 ± 2.74 (90–100) | 0.192 |
Waist circumference (cm) | 93.87 ± 11.40 (68–130) | 93.82 ± 11.23 (68–125) | 101.85 ± 9.84 (82–130) | 0.001 |
Hip circumference (cm) | 102.12 ± 9.96 (62–128) | 100.99 ± 10.51 (62–128) | 105.58 ± 7.17 (92–120) | 0.040 |
Waist to Hip ratio | 0.93 ± 0.06 (0.78–1.11) | 0.93 ± 0.07 (0.78–1.11) | 0.96 ± 0.05 (0.89–1.10) | 0.040 |
FMI (kg of fat mass/m2) | 6.76 ± 3.67 (0.04–16.33) | 7.43 ± 3.78 (0.75–16.33) | 4.76 ± 2.47 (0.04–10.17) | 0.001 |
FFMI (kg of fat-free mass/m2) | 18.51 ± 2.85 (13.08–26.40) | 20.68 ± 2.78 (13.08–23.47) | 17.79 ± 2.50 (16.34–26.40) | <0.001 |
MMI (kg of muscle mass/m2) | 11.65 ± 2.80 (6.30–21.38) | 11.05 ± 2.40 (6.30–17.73) | 13.47 ± 3.14 (8.41–21.38) | <0.001 |
METs (METs) | 1.01 ± 0.21 (0.65–1.66) | 1.01 ± 0.22 (0.65–1.66) | 1 ± 0.18 (0.77–1.48) | 0.726 |
Sedentary time (min) | 657.23 ± 144.56 (348–1054) | 662.73 ± 154.87 (348–1054) | 640.73 ± 108.73 (436–846) | 0.496 |
LIPAT (min) | 167.32 ± 119.26 (3–520) | 174.91 ± 128.93 (3–520) | 144.56 ± 81.71 (26–370) | 0.254 |
MIPAT (min) | 30.99 ± 51.14 (0–270) | 29.07 ± 52.22 (0–269) | 36.78 ± 48.22 (0–205) | 0.500 |
VIPAT (min) | - | - | - | - |
Mean bouts number (n°) | 11.07 ± 13.73 (0–58) | 10.60 ± 13.80 (0–57) | 12.49 ± 13.66 (0–58) | 0.537 |
B1 (n°) | 5.80 ± 6.49 (0–24) | 5.66 ± 6.71 (0–24) | 6.24 ± 5.88 (0–24) | 0.689 |
B2 (n°) | 1.98 ± 2.68 (0–11) | 1.87 ± 2.61 (0–11) | 2.29 ± 2.93 (0–11) | 0.485 |
B3 (n°) | 1.13 ± 1.57 (0–8) | 1.04 ± 1.49 (0–5) | 1.38 ± 1.79 (0–3) | 0.337 |
B4 (n°) | 0.53 ± 0.88 (0–4) | 0.55 ± 0.92 (0–4) | 0.47 ± 0.73 (0–3) | 0.659 |
B < 5 (n°) | 9.44 ± 11.05 (0–46) | 9.13 ± 11.15 (0–40) | 10.38 ± 10.91 (0–46) | 0.613 |
B35 (n°) | 1.63 ± 3.20 (0–17) | 1.47 ± 3.25 (0–17) | 2.11 ± 3.05 (0–12) | 0.370 |
Lying down (min) | 584.33 ± 116.75 (285–893.25) | 573.15 ± 125.82 (285–893.25) | 617.87 ± 76.24 (492–759.67) | 0.085 |
Sleeping (min) | 476.71 ± 109 (255–723) | 472.45 ± 116.79 (255–723) | 489.47 ± 81.86 (304–641) | 0.485 |
Sleeping efficacy (%) | 81.65 ± 9.26 (49–100) | 82.43 ± 8.87 (53–100) | 79.32 ± 10.16 (49–93) | 0.131 |
TSH (mU/mL) | 1.91 ± 1.48 (0.18–7.98) | 1.93 ± 1.47 (0.18–7.98) | 1.85 ± 1.53 (0.73–7.96) | 0.820 |
fT3 (pg/mL) | 2.79 ± 0.36 (2.05–3.91) | 2.76 ± 0.35 (2.05–3.91) | 2.88 ± 0.39 (2.06–3.63) | 0.152 |
fT4 (ng/dL) | 0.83 ± 0.18 (0.48–1.31) | 0.83 ± 0.19 (0.48–1.31) | 0.84 ± 0.16 (0.59–1.20) | 0.691 |
C-reactive protein (mg/dL) | 0.69 ± 1.04 (0.02–6.31) | 0.69 ± 1.06 (0.02–6.31) | 0.69 ± 1.02 (0.03–4.92) | 0.996 |
Cardiovascular diseases (n° no/n° yes) | 46/62 | 37/44 | 9/18 | 0.368 |
Cerebrovascular diseases (n° no/n° yes) | 75/33 | 57/24 | 18/9 | 0.614 |
Respiratory diseases (n° no/n° yes) | 87/21 | 63/18 | 24/3 | 0.545 |
Oncological diseases (n° no/n° yes) | 43/65 | 31/50 | 12/15 | 0.495 |
Articular pain (n° no/n° yes) | 40/68 | 28/53 | 12/15 | 0.350 |
TSH (mU/mL) | fT3 (pg/mL) | fT4 (ng/dL) | METs | Sedentary Time (min) | LIPAT (min) | MIPAT (min) | Mean Bouts Number (n°) | B1 (n°) | B2 (n°) | B3 (n°) | B4 (n°) | B < 5 (n°) | B ≥ 5 (n°) | Lying Down (min) | Sleeping (min) | Sleeping Efficacy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSH (mU/mL) | 1 | - | −0.293 ** | 0.187 ° | - | - | - | - | - | - | - | 0.213 * | - | 0.179 ° | −0.242 * | - | - |
fT3 (pg/mL) | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
fT4 (ng/dL) | 1 | −0.227 * | - | −0.202 * | −0.173 ° | - | - | - | - | - | - | −0.177 ° | 0.233 * | 0.188 * | - |
Characteristics | TSH 1st Tertile (TSH < 1.11 mU/mL) (n = 35) | TSH 2nd Tertile (1.11 ≤ TSH ≤ 2.12 mU/mL) (n = 38) | TSH 3rd Tertile (TSH > 2.12 mU/mL) (n = 35) | p |
---|---|---|---|---|
Age (years) | 92.77 ± 3.14 | 92.21 ± 3.02 | 93.60 ± 3.32 | 0.175 |
Waist circumference (cm) | 95.54 ± 10.66 | 95.58 ± 10.28 | 96.49 ± 11.48 | 0.927 |
Hip circumference (cm) | 101.71 ± 8.81 | 101.31 ± 11.33 | 103.34 ± 9.75 | 0.670 |
Waist to Hip ratio | 0.93 ± 0.06 | 0.94 ± 0.07 | 0.93 ± 0.07 | 0.902 |
FMI (kg of fat mass/m2) | 6.67 ± 3.46 | 6.50 ± 3.86 | 7.14 ± 3.74 | 0.747 |
FFMI (kg of fat-free mass/m2) | 17.98 ± 2.71 | 18.84 ± 2.76 | 18.69 ± 3.08 | 0.398 |
MMI (kg of muscle mass/m2) | 11.20 ± 3.04 | 11.91 ± 2.45 | 11.82 ± 2.93 | 0.504 |
METs (METs) | 0.95 ± 0.14 ^ | 1.03 ± 0.20 | 1.06 ± 0.25 ^ | 0.066 |
Sedentary time (min) | 668.97 ± 131.09 | 648.29 ± 156.53 | 655.20 ± 147.25 | 0.828 |
LIPAT (min) | 137.37 ± 98.26 | 183.21 ± 139.03 | 180.03 ± 112.75 | 0.195 |
MIPAT (min) | 15.96 ± 20.93 ^ | 29.58 ± 32.37 | 47.57 ± 78.33 ^ | 0.033 |
VIPAT (min) | - | - | - | - |
Mean bouts number (n°) | 7.37 ± 8.67 | 12.27 ± 11.27 | 13.47 ± 18.92 | 0.142 |
B1 (n°) | 4.22 ± 4.79 | 6.94 ± 6.33 | 6.16 ± 7.88 | 0.190 |
B2 (n°) | 1.45 ± 2.25 | 2.18 ± 2.52 | 2.29 ± 3.20 | 0.372 |
B3 (n°) | 0.77 ± 1.10 | 1.25 ± 1.23 | 1.36 ± 2.16 | 0.239 |
B4 (n°) | 0.33 ± 0.55 | 0.47 ± 0.62 | 0.80 ± 1.26 | 0.071 |
B<5 (n°) | 6.77 ± 7.99 | 10.83 ± 9.87 | 10.61 ± 14.27 | 0.222 |
B35 (n°) | 0.59 ± 1.04 ^ | 1.44 ± 2.09 | 2.86 ± 4.87 ^ | 0.010 |
Lying down (min) | 617.66 ± 127.89 | 578.86 ± 116.15 | 556.95 ± 99.54 | 0.085 |
Sleeping (min) | 501.68 ± 108.39 | 470.27 ± 118.97 | 458.72 ± 96.02 | 0.234 |
Sleeping efficacy (%) | 81.46 ± 8.30 | 81.16 ± 11.14 | 82.39 ± 8.07 | 0.843 |
TSH (mU/mL) | 0.7 ± 0.26 ^ | 1.58 ± 0.34 ^ | 3.49 ± 1.57 ^ | <0.001 |
fT3 (pg/mL) | 2.89 ± 0.35 | 2.77 ± 0.30 | 2.72 ± 0.42 | 0.139 |
fT4 (ng/dL) | 0.88 ± 0.18 ^ | 0.86 ± 0.17 ^^ | 0.75 ± 0.17 ^, ^^ | 0.005 |
C-reactive protein (mg/dL) | 0.86 ± 1.32 | 0.48 ± 0.55 | 0.76 ± 1.13 | 0.279 |
TSH (mU/mL) | fT3 (pg/mL) | fT4 (ng/dL) | METs | Sedentary Time (min) | LIPAT (min) | MIPAT (min) | Mean Bouts Number (n°) | B1 (n°) | B2 (n°) | B3 (n°) | B4 (n°) | B < 5 (n°) | B ≥ 5 (n°) | Lying Down (min) | Sleeping (min) | Sleeping Efficacy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSH (mU/mL) | 1 | - | −0.255 * | 0.226 * | - | - | 0.226 * | 0.204 ° | - | - | 0.194 ° | 0.245 * | - | 0.242 * | -0.202° | - | - |
fT3 (pg/mL) | 1 | - | 0.229 * | - | - | - | - | - | - | - | - | - | - | - | - | - | |
fT4 (ng/dL) | 1 | −0.296 * | - | −0.231 * | −0.244 * | - | - | - | - | - | - | −0.271 * | 0.259 * | 0.207 ° | - |
Characteristics | TSH 1st Tertile (TSH < 1.11 mU/mL) (n = 27) | TSH 2nd Tertile (1.11 ≤ TSH ≤ 2.12 mU/mL) (n = 26) | TSH 3rd Tertile (TSH > 2.12 mU/mL) (n = 28) | p |
---|---|---|---|---|
Age (years) | 93.19 ± 3.37 | 92.54 ± 3.31 | 93.46 ± 3.28 | 0.582 |
Waist circumference (cm) | 95.33 ± 11.29 | 92.58 ± 13.03 | 93.43 ± 9.64 | 0.671 |
Hip circumference (cm) | 101.33 ± 9.27 | 99.92 ± 12.94 | 101.57 ± 9.61 | 0.837 |
Waist to Hip ratio | 0.94 ± 0.06 | 0.92 ± 0.07 | 0.92 ± 0.07 | 0.652 |
FMI (kg of fat mass/m2) | 7.36 ± 3.45 | 7.58 ± 4 | 7.36 ± 4 | 0.970 |
FFMI (kg of fat-free mass/m2) | 17.44 ± 2.31 | 18.12 ± 2.69 | 17.82 ± 2.55 | 0.621 |
MMI (kg of muscle mass//m2) | 10.56 ± 2.59 | 11.57 ± 2.41 | 11.02 ± 2.17 | 0.318 |
METs (METs) | 0.92 ± 0.11 ^ | 1.03 ± 0.24 | 1.10 ± 0.24 ^ | 0.010 |
Sedentary time (min) | 685.37 ± 129.87 | 667.68 ± 182.82 | 636.30 ± 150.38 | 0.498 |
LIPAT (min) | 120.20 ± 86.53 ^, ^^ | 205.37 ± 161.30 ^, ^^ | 199.38 ± 115.93 ^ | 0.024 |
MIPAT (min) | 12.32 ± 16.44 ^ | 22.64 ± 25.91 | 51.19 ± 79.82 ^ | 0.015 |
VIPAT (min) | - | - | - | - |
Mean bouts number (n°) | 6.39 ± 8.04 | 11.08 ± 11.43 | 14.20 ± 18.71 | 0.108 |
B1 (n°) | 3.67 ± 4.51 | 6.90 ± 7.08 | 6.42 ± 7.84 | 0.163 |
B2 (n°) | 1.35 ± 2.32 | 1.85 ± 2.31 | 2.40 ± 3.08 | 0.339 |
B3 (n°) | 0.71 ± 1.08 | 1.03 ± 1.18 | 1.38 ± 1.98 | 0.253 |
B4 (n°) | 0.32 ± 0.57 ^ | 0.41 ± 0.58 | 0.90 ± 1.31 ^ | 0.042 |
B < 5 (n°) | 6.06 ± 7.69 | 10.20 ± 10.46 | 11.10 ± 13.98 | 0.207 |
B35 (n°) | 0.34 ± 0.55 ^ | 0.89 ± 1.40 | 3.09 ± 4.98 ^ | 0.003 |
Lying down (min) | 622.08 ± 140.28 ^ | 544.24 ± 116.57 | 552.83 ± 108.45 ^ | 0.043 |
Sleeping (min) | 500.98 ± 122.67 | 456.14 ± 126.09 | 460.09 ± 99.88 | 0.300 |
Sleeping efficacy (%) | 80.64 ± 8.86 | 83.34 ± 10.49 | 83.32 ± 7.14 | 0.442 |
TSH (mU/mL) | 0.64 ± 0.27 ^ | 1.69 ± 0.34 ^ | 3.39 ± 1.52 ^ | <0.001 |
fT3 (pg/mL) | 2.85 ± 0.36 | 2.75 ± 0.30 | 2.68 ± 0.38 | 0.204 |
fT4 (ng/dL) | 0.89 ± 0.21 ^ | 0.84 ± 0.17 | 0.75 ± 0.18 ^ | 0.034 |
C-reactive protein (mg/dL) | 0.99 ± 1.48 | 0.44 ± 0.48 | 0.64 ± 0.92 | 0.163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Blasio, A.; Di Dalmazi, G.; Izzicupo, P.; Bucci, I.; Giuliani, C.; Di Baldassarre, A.; Cecchi, F.; Molino Lova, R.; Vannetti, F.; Napolitano, G.; et al. Serum TSH and Daily Physical Activity in a Cohort of Nonagenarians: Results from the Mugello Study. J. Funct. Morphol. Kinesiol. 2022, 7, 56. https://doi.org/10.3390/jfmk7030056
Di Blasio A, Di Dalmazi G, Izzicupo P, Bucci I, Giuliani C, Di Baldassarre A, Cecchi F, Molino Lova R, Vannetti F, Napolitano G, et al. Serum TSH and Daily Physical Activity in a Cohort of Nonagenarians: Results from the Mugello Study. Journal of Functional Morphology and Kinesiology. 2022; 7(3):56. https://doi.org/10.3390/jfmk7030056
Chicago/Turabian StyleDi Blasio, Andrea, Giulia Di Dalmazi, Pascal Izzicupo, Ines Bucci, Cesidio Giuliani, Angela Di Baldassarre, Francesca Cecchi, Raffaele Molino Lova, Federica Vannetti, Giorgio Napolitano, and et al. 2022. "Serum TSH and Daily Physical Activity in a Cohort of Nonagenarians: Results from the Mugello Study" Journal of Functional Morphology and Kinesiology 7, no. 3: 56. https://doi.org/10.3390/jfmk7030056
APA StyleDi Blasio, A., Di Dalmazi, G., Izzicupo, P., Bucci, I., Giuliani, C., Di Baldassarre, A., Cecchi, F., Molino Lova, R., Vannetti, F., Napolitano, G., & Macchi, C. (2022). Serum TSH and Daily Physical Activity in a Cohort of Nonagenarians: Results from the Mugello Study. Journal of Functional Morphology and Kinesiology, 7(3), 56. https://doi.org/10.3390/jfmk7030056