Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance
Abstract
:1. Introduction
- Torque—force measured about a joint’s axis of rotation;
- Work—product of muscular force and the distance over which that force was applied;
- Power—amount of work performed in a given amount of time.
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Isokinetic Knee Extension and Flexion
2.4. Effectiveness of the Blinding
2.5. Statistical Analysis
3. Results
3.1. Peak Torque
3.2. Average Power
3.3. Total Work
3.4. Effectiveness of the Blinding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Hruda, K.V.; Hicks, A.L.; McCartney, N. Training for muscle power in older adults: Effects on functional abilities. Can. J. Appl. Physiol. 2003, 28, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, R.; Islam, M.M.; Lee, S.C.; Koizumi, D.; Rogers, M.E.; Takeshima, N. Threshold of lower body muscular strength necessary to perform ADL independently in community-dwelling older adults. Clin. Rehabil. 2008, 22, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Strength, power, and muscular endurance exercise and elite rowing ergometer performance. J. Strength Cond. Res. 2013, 27, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test-retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sports Med. Open. 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.J.; Murphy, A.J. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996, 22, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Perrin, D.H. Isokinetic Exercise and Assessment; Human Kinetics: Champaign, IL, USA, 1993. [Google Scholar]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Grgic, J. Effects of caffeine on resistance exercise: A review of recent research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef] [PubMed]
- Cristina-Souza, G.; Santos, P.S.; Santos-Mariano, A.C.; Coelho, D.B.; Rodacki, A.; DE-Oliveira, F.R.; Bishop, D.J.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine increases endurance performance via changes in neural and muscular determinants of performance fatigability. Med. Sci. Sports Exerc. 2022, 54, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pickering, C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J. Sci. Med. Sport 2019, 22, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Duncan, M.J.; Thake, C.D.; Downs, P.J. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle. Nerve 2014, 50, 523–527. [Google Scholar] [PubMed]
- Tallis, J.; Duncan, M.J.; Wright, S.L.; Eyre, E.L.; Bryant, E.; Langdon, D.; James, R.S. Assessment of the ergogenic effect of caffeine supplementation on mood, anticipation timing, and muscular strength in older adults. Physiol. Rep. 2013, 1, e00072. [Google Scholar] [PubMed]
- Timmins, T.D.; Saunders, D.H. Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. J. Strength Cond. Res. 2014, 28, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [PubMed]
- Marticorena, F.M.; Carvalho, A.; de Oliveira, L.F.; Dolan, E.; Gualano, B.; Swinton, S.; Saunders, B. Nonplacebo controls to determine the magnitude of ergogenic interventions: A systematic review and meta-analysis. Med. Sci. Sports Exerc. 2021, 53, 1766–1777. [Google Scholar] [CrossRef]
- Grgic, J.; Venier, S.; Mikulic, P. Both caffeine and placebo improve vertical jump performance compared with a nonsupplemented control condition. Int. J. Sports Physiol. Perform. 2021, 16, 448–451. [Google Scholar] [CrossRef]
- Grgic, J.; Venier, S.; Schoenfeld, B.J.; Mikulic, P. Caffeine ingestion enhances repetition velocity in resistance exercise: A randomized, crossover, double-blind study involving control and placebo conditions. J. Hum. Kinet. 2020, 74, 177–183. [Google Scholar]
- Venier, S.; Grgic, J.; Mikulic, P. Caffeinated gel ingestion enhances jump performance, muscle strength, and power in trained men. Nutrients 2019, 11, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venier, S.; Grgic, J.; Mikulic, P. Acute enhancement of jump performance, muscle strength, and power in resistance-trained men after consumption of caffeinated chewing gum. Int. J. Sports Physiol. Perform. 2019, 14, 1415–1421. [Google Scholar] [CrossRef]
- Glade, M.J. Caffeine-not just a stimulant. Nutrition 2010, 26, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sports 2017, 27, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Bang, H.; Ni, L.; Davis, C.E. Assessment of blinding in clinical trials. Control. Clin. Trials 2004, 25, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Black, C.D.; Waddell, D.E.; Gonglach, A.R. Caffeine’s ergogenic effects on cycling: Neuromuscular and perceptual factors. Med. Sci. Sports Exerc. 2015, 47, 1145–1158. [Google Scholar] [PubMed]
- Tallis, J.; Muhammad, B.; Islam, M.; Duncan, M.J. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve 2016, 54, 479–486. [Google Scholar] [CrossRef]
- Ali, A.; O’Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J. Int. Soc. Sports Nutr. 2016, 13, 46. [Google Scholar] [CrossRef]
- Tallis, J.; Yavuz, H.C.M. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Appl. Physiol. Nutr. Metab. 2018, 43, 274–281. [Google Scholar] [CrossRef]
- McNaughton, L.R.; Lovell, R.J.; Siegler, J.; Midgley, A.W.; Moore, L.; Bentley, D.J. The effects of caffeine ingestion on time trial cycling performance. Int. J. Sports Physiol. Perform. 2008, 3, 157–163. [Google Scholar] [CrossRef] [PubMed]
Exercise Test | Outcome | Caffeine | Placebo | Control |
---|---|---|---|---|
Isokinetic knee extension at 60° s−1 | Peak torque (Nm) | 242 ± 47 | 228 ± 43 | 232 ± 41 |
Average power (W) | 180 ± 40 | 169 ± 34 | 172 ± 33 | |
Total work (J) | 1129 ± 242 | 1060 ± 212 | 1097 ± 204 | |
Isokinetic knee flexion at 60° s−1 | Peak torque (Nm) | 141 ± 28 | 135 ± 23 | 136 ± 21 |
Average power (W) | 109 ± 24 | 103 ± 20 | 104 ± 20 | |
Total work (J) | 708 ± 147 | 676 ± 132 | 680 ± 116 | |
Isokinetic knee extension at 180° s−1 | Peak torque (Nm) | 173 ± 25 | 166 ± 26 | 168 ± 25 |
Average power (W) | 335 ± 54 | 311 ± 55 | 315 ± 53 | |
Total work (J) | 891 ± 142 | 838 ± 141 | 843 ± 143 | |
Isokinetic knee flexion at 180° s−1 | Peak torque (Nm) | 108 ± 33 | 104 ± 16 | 103 ± 16 |
Average power (W) | 204 ± 41 | 193 ± 38 | 191 ± 39 | |
Total work (J) | 572 ± 112 | 545 ± 101 | 536 ± 100 | |
Data are presented as mean ± standard deviation |
Outcome | Pairwise Comparison | p-Value | Rank | Adjusted Statistical Significance Threshold | Hedges’ g (95% CI) |
---|---|---|---|---|---|
Knee extension peak torque at 60° s−1 | Placebo vs. control | 0.307 | 3 | 0.05 | –0.09 (–0.26, 0.07) |
Caffeine vs. control * | 0.012 | 2 | 0.025 | 0.22 (0.02, 0.43) | |
Caffeine vs. placebo * | 0.004 | 1 | 0.017 | 0.30 (0.12, 0.49) | |
Knee extension peak torque at 180° s−1 | Placebo vs. control | 0.596 | 3 | 0.05 | –0.07 (–0.26, 0.10) |
Caffeine vs. control | 0.032 | 2 | 0.025 | 0.19 (0.01, 0.39) | |
Caffeine vs. placebo * | 0.006 | 1 | 0.017 | 0.26 (0.09, 0.45) | |
Knee flexion peak torque at 60° s−1 | Placebo vs. control | 0.802 | 3 | 0.05 | –0.04 (–0.19, 0.10) |
Caffeine vs. control | 0.077 | 2 | 0.025 | 0.19 (–0.03, 0.43) | |
Caffeine vs. placebo | 0.028 | 1 | 0.017 | 0.23 (0.03, 0.43) | |
Knee extension average power at 60° s−1 | Placebo vs. control | 0.252 | 3 | 0.05 | –0.09 (–0.24, 0.06) |
Caffeine vs. control * | 0.012 | 2 | 0.025 | 0.21 (0.04, 0.39) | |
Caffeine vs. placebo * | 0.008 | 1 | 0.017 | 0.29 (0.07, 0.52) | |
Knee extension average power at 180° s−1 | Placebo vs. control | 0.450 | 3 | 0.05 | –0.07 (–0.26, 0.12) |
Caffeine vs. control * | 0.004 | 2 | 0.025 | 0.36 (0.11, 0.63) | |
Caffeine vs. placebo * | 0.001 | 1 | 0.017 | 0.43 (0.21, 0.66) | |
Knee flexion average power at 60° s−1 | Placebo vs. control | 0.974 | 3 | 0.05 | –0.05 (–0.25, 0.15) |
Caffeine vs. control | 0.045 | 2 | 0.025 | 0.24 (0.00, 0.48) | |
Caffeine vs. placebo | 0.035 | 1 | 0.017 | 0.26 (0.03, 0.50) | |
Knee flexion average power at 180° s−1 | Placebo vs. control | 0.664 | 3 | 0.05 | 0.05 (0.14, 0.25) |
Caffeine vs. placebo | 0.051 | 2 | 0.025 | 0.27 (–0.01, 0.56) | |
Caffeine vs. control | 0.029 | 1 | 0.017 | 0.31 (0.03, 0.61) | |
Knee extension total work at 60° s−1 | Caffeine vs. control | 0.174 | 3 | 0.05 | 0.14 (–0.06, 0.34) |
Placebo vs. control | 0.135 | 2 | 0.025 | –0.17 (–0.41, 0.06) | |
Caffeine vs. placebo | 0.023 | 1 | 0.017 | 0.29 (0.03, 0.57) | |
Knee extension total work at 180° s−1 | Placebo vs. control | 0.680 | 3 | 0.05 | –0.03 (–0.18, 0.11) |
Caffeine vs. control * | 0.002 | 2 | 0.025 | 0.33 (0.11, 0.55) | |
Caffeine vs. placebo * | 0.001 | 1 | 0.017 | 0.36 (0.15, 0.59) | |
Knee flexion total work at 180° s−1 | Placebo vs. control | 0.279 | 3 | 0.05 | 0.09 (–0.08, 0.26) |
Caffeine vs. placebo | 0.094 | 2 | 0.025 | 0.24 (–0.04, 0.54) | |
Caffeine vs. control | 0.0175 | 1 | 0.017 | 0.33 (0.06, 0.62) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grgic, J.; Venier, S.; Mikulic, P. Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. J. Funct. Morphol. Kinesiol. 2022, 7, 71. https://doi.org/10.3390/jfmk7040071
Grgic J, Venier S, Mikulic P. Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. Journal of Functional Morphology and Kinesiology. 2022; 7(4):71. https://doi.org/10.3390/jfmk7040071
Chicago/Turabian StyleGrgic, Jozo, Sandro Venier, and Pavle Mikulic. 2022. "Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance" Journal of Functional Morphology and Kinesiology 7, no. 4: 71. https://doi.org/10.3390/jfmk7040071
APA StyleGrgic, J., Venier, S., & Mikulic, P. (2022). Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. Journal of Functional Morphology and Kinesiology, 7(4), 71. https://doi.org/10.3390/jfmk7040071