Acute Low Force Electrically Induced Exercise Modulates Post Prandial Glycemic Markers in People with Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glycemic, Inflammatory, and Lipid Profile
2.2. Experimental Design
2.3. Electrical Stimulation
2.4. Blood Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Glycemic, Inflammatory, and Lipid Profile
3.2. Baseline Venous Blood Biomarkers for Control and LFE Sessions
3.3. One Hour Venous Blood Biomarkers for Control and LFE Sessions after Glucose Challenge
3.4. Two-Hour Venous Blood Biomarkers for Control and LFE Sessions
3.5. Capillary Glucose (cAUC) and Heart Rate during Control and LFE OGTT
4. Discussion
4.1. Low Force Electrically Induced Exercise
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodyear, L.J.; Kahn, B.B. Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med. 1998, 49, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Petrie, M.A.; Suneja, M.; Faidley, E.; Shields, R.K. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS ONE 2014, 9, e115791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.J.; Apple, D.F., Jr.; Hillegass, E.A.; Dudley, G.A. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 373–378. [Google Scholar] [CrossRef]
- Dudley-Javoroski, S.; Shields, R.K. Muscle and bone plasticity after spinal cord injury: Review of adaptations to disuse and to electrical muscle stimulation. J. Rehabil. Res. Dev. 2008, 45, 283–296. [Google Scholar] [CrossRef]
- Petrie, M.A.; Taylor, E.B.; Suneja, M.; Shields, R.K. Genomic and Epigenomic Evaluation of Electrically Induced Exercise in People with Spinal Cord Injury: Application to Precision Rehabilitation. Phys. Ther. 2022, 102, pzab243. [Google Scholar] [CrossRef]
- Bjornholm, M.; Zierath, J.R. Insulin signal transduction in human skeletal muscle: Identifying the defects in Type II diabetes. Biochem. Soc. Trans. 2005, 33, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Farrow, M.T.; Maher, J.L.; Nightingale, T.E.; Thompson, D.; Bilzon, J.L.J. A Single Bout of Upper-Body Exercise Has No Effect on Postprandial Metabolism in Persons with Chronic Paraplegia. Med. Sci. Sport. Exerc. 2021, 53, 1041–1049. [Google Scholar] [CrossRef]
- Ryder, J.W.; Chibalin, A.V.; Zierath, J.R. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol. Scand. 2001, 171, 249–257. [Google Scholar] [CrossRef]
- Kjobsted, R.; Munk-Hansen, N.; Birk, J.B.; Foretz, M.; Viollet, B.; Bjornholm, M.; Zierath, J.R.; Treebak, J.T.; Wojtaszewski, J.F. Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes 2017, 66, 598–612. [Google Scholar] [CrossRef]
- Bellini, A.; Nicolo, A.; Bazzucchi, I.; Sacchetti, M. Effects of Different Exercise Strategies to Improve Postprandial Glycemia in Healthy Individuals. Med. Sci. Sport. Exerc. 2021, 53, 1334–1344. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Mann, J.I.; Williams, S.; Venn, B.J. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: A randomised crossover study. Diabetologia 2016, 59, 2572–2578. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, W.C.; Solomon, S.S.; Jallepalli, P.; Heckemeyer, C.; Finnern, J.; Powers, A. Glucose intolerance due to insulin resistance in patients with spinal cord injuries. Diabetes 1980, 29, 906–910. [Google Scholar] [CrossRef]
- Karlsson, A.K. Insulin resistance and sympathetic function in high spinal cord injury. Spinal. Cord. 1999, 37, 494–500. [Google Scholar] [CrossRef]
- Banerjea, R.; Sambamoorthi, U.; Weaver, F.; Maney, M.; Pogach, L.M.; Findley, T. Risk of stroke, heart attack, and diabetes complications among veterans with spinal cord injury. Arch. Phys. Med. Rehabil. 2008, 89, 1448–1453. [Google Scholar] [CrossRef]
- Saunders, L.L.; Clarke, A.; Tate, D.G.; Forchheimer, M.; Krause, J.S. Lifetime prevalence of chronic health conditions among persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, 673–679. [Google Scholar] [CrossRef]
- Trico, D.; Natali, A.; Arslanian, S.; Mari, A.; Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 2018, 3, e124912. [Google Scholar] [CrossRef] [Green Version]
- Woelfel, J.R.; Kimball, A.L.; Yen, C.L.; Shields, R.K. Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury. Med. Sci. Sport. Exerc. 2017, 49, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Sumrell, R.M.; Nightingale, T.E.; McCauley, L.S.; Gorgey, A.S. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS ONE 2018, 13, e0203049. [Google Scholar] [CrossRef] [Green Version]
- Dudley-Javoroski, S.; Shields, R.K. Longitudinal changes in femur bone mineral density after spinal cord injury: Effects of slice placement and peel method. Osteoporos. Int. 2010, 21, 985–995. [Google Scholar] [CrossRef]
- Dudley-Javoroski, S.; Shields, R.K. Regional cortical and trabecular bone loss after spinal cord injury. J. Rehabil. Res. Dev. 2012, 49, 1365–1376. [Google Scholar] [CrossRef]
- Edwards, W.B.; Schnitzer, T.J.; Troy, K.L. Bone mineral loss at the proximal femur in acute spinal cord injury. Osteoporos. Int. 2013, 24, 2461–2469. [Google Scholar] [CrossRef]
- Shields, R.K. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J. Neurophysiol. 1995, 73, 2195–2206. [Google Scholar] [CrossRef]
- Bauman, W.A.; Spungen, A.M.; Adkins, R.H.; Kemp, B.J. Metabolic and endocrine changes in persons aging with spinal cord injury. Assist. Technol. 1999, 11, 88–96. [Google Scholar] [CrossRef]
- Monroe, M.B.; Tataranni, P.A.; Pratley, R.; Manore, M.M.; Skinner, J.S.; Ravussin, E. Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am. J. Clin. Nutr. 1998, 68, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K. Muscular, skeletal, and neural adaptations following spinal cord injury. J. Orthop. Sport. Phys. Ther. 2002, 32, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y.; Myers, J.; Hayes, A.; Madan, S.; Froelicher, V.F.; Perkash, I.; Kiratli, B.J. C-reactive protein, metabolic syndrome, and insulin resistance in individuals with spinal cord injury. J. Spinal. Cord. Med. 2005, 28, 20–25. [Google Scholar] [CrossRef]
- Glaser, R.M. Physiologic aspects of spinal cord injury and functional neuromuscular stimulation. Cent. Nerv. Syst. Trauma J. Am. Paralys. Assoc. 1986, 3, 49–62. [Google Scholar] [CrossRef]
- Enoka, R.M.; Amiridis, I.G.; Duchateau, J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology 2020, 35, 40–56. [Google Scholar] [CrossRef]
- Lieber, R.L. Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation/Richard L. Lieber, 3rd ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2010. [Google Scholar]
- Stanford, K.I.; Goodyear, L.J. Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle. Adv. Physiol. Educ. 2014, 38, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Jessen, N.; Goodyear, L.J. Contraction signaling to glucose transport in skeletal muscle. J. Appl. Physiol. 2005, 99, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.L.; Kim, S.J.; Lee, K.T.; Kim, J.; Mu, J.; Birnbaum, M.J.; Soo Kim, S.; Ha, J. The regulation of AMP-activated protein kinase by H(2)O(2). Biochem. Biophys. Res. Commun. 2001, 287, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Trewin, A.J.; Berry, B.J.; Wojtovich, A.P. Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, T.E.; Sylow, L.; Rose, A.J.; Madsen, A.B.; Angin, Y.; Maarbjerg, S.J.; Richter, E.A. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca(2+) release. Mol. Metab. 2014, 3, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Ratkevicius, A.; Mizuno, M.; Povilonis, E.; Quistorff, B. Energy metabolism of the gastrocnemius and soleus muscles during isometric voluntary and electrically induced contractions in man. J. Physiol. 1998, 507 (Pt 2), 593–602. [Google Scholar] [CrossRef]
- Miyamoto, T.; Fukuda, K.; Kimura, T.; Matsubara, Y.; Tsuda, K.; Moritani, T. Effect of percutaneous electrical muscle stimulation on postprandial hyperglycemia in type 2 diabetes. Diabetes Res. Clin. Pract. 2012, 96, 306–312. [Google Scholar] [CrossRef]
- Miyamoto, T.; Iwakura, T.; Matsuoka, N.; Iwamoto, M.; Takenaka, M.; Akamatsu, Y.; Moritani, T. Impact of prolonged neuromuscular electrical stimulation on metabolic profile and cognition-related blood parameters in type 2 diabetes: A randomized controlled cross-over trial. Diabetes Res. Clin. Pract. 2018, 142, 37–45. [Google Scholar] [CrossRef]
- Talmadge, R.J.; Castro, M.J.; Apple, D.F., Jr.; Dudley, G.A. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J. Appl. Physiol. 2002, 92, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.M.; Suneja, M.; Dudley-Javoroski, S.; Shields, R.K. Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis. Muscle Nerve 2011, 43, 65–75. [Google Scholar] [CrossRef]
- Petrie, M.A.; Suneja, M.; Faidley, E.; Shields, R.K. Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury. Physiol. Rep. 2014, 2, e00248. [Google Scholar] [CrossRef]
- Shields, R.K.; Schlechte, J.; Dudley-Javoroski, S.; Zwart, B.D.; Clark, S.D.; Grant, S.A.; Mattiace, V.M. Bone mineral density after spinal cord injury: A reliable method for knee measurement. Arch. Phys. Med. Rehabil. 2005, 86, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Wilmet, E.; Ismail, A.A.; Heilporn, A.; Welraeds, D.; Bergmann, P. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 1995, 33, 674–677. [Google Scholar] [CrossRef] [Green Version]
- Szollar, S.M.; Martin, E.M.; Sartoris, D.J.; Parthemore, J.G.; Deftos, L.J. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am. J. Phys. Med. Rehabil. 1998, 77, 28–35. [Google Scholar] [CrossRef]
- Hartkopp, A.; Murphy, R.J.; Mohr, T.; Kjaer, M.; Biering-Sorensen, F. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch. Phys. Med. Rehabil. 1998, 79, 1133–1136. [Google Scholar] [CrossRef]
- Petrie, M.; Suneja, M.; Shields, R.K. Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J. Appl. Physiol. 2015, 118, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Petrie, M.A.; Sharma, A.; Taylor, E.B.; Suneja, M.; Shields, R.K. Impact of short- and long-term electrically induced muscle exercise on gene signaling pathways, gene expression, and PGC1a methylation in men with spinal cord injury. Physiol. Genom. 2020, 52, 71–80. [Google Scholar] [CrossRef]
- Gillen, J.B.; Estafanos, S.; Govette, A. Exercise-nutrient interactions for improved postprandial glycemic control and insulin sensitivity. Appl. Physiol. Nutr. Metab. 2021, 46, 856–865. [Google Scholar] [CrossRef]
- Li, J.; Hunter, G.R.; Chen, Y.; McLain, A.; Smith, D.L.; Yarar-Fisher, C. Differences in Glucose Metabolism Among Women With Spinal Cord Injury May Not Be Fully Explained by Variations in Body Composition. Arch. Phys. Med. Rehabil. 2019, 100, 1061–1067.e1061. [Google Scholar] [CrossRef]
- Belanger, K.; Barnes, J.D.; Longmuir, P.E.; Anderson, K.D.; Bruner, B.; Copeland, J.L.; Gregg, M.J.; Hall, N.; Kolen, A.M.; Lane, K.N.; et al. The relationship between physical literacy scores and adherence to Canadian physical activity and sedentary behaviour guidelines. BMC Public Health 2018, 18, 1042. [Google Scholar] [CrossRef]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstrale, M.; Laurila, E.; et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Zierath, J.R.; Hawley, J.A. Skeletal muscle fiber type: Influence on contractile and metabolic properties. PLoS Biol. 2004, 2, e348. [Google Scholar] [CrossRef]
- Wang, T.D.; Wang, Y.H.; Huang, T.S.; Su, T.C.; Pan, S.L.; Chen, S.Y. Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J. Med. Assoc. 2007, 106, 919–928. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; He, H.; Yu, K.; Zhang, M.; An, Z.; Huang, H. The Association between Serum Uric Acid Levels and Insulin Resistance and Secretion in Prediabetes Mellitus: A Cross-Sectional Study. Ann. Clin. Lab. Sci. 2019, 49, 218–223. [Google Scholar]
- Maimoun, L.; Fattal, C.; Sultan, C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: A review. Metab. Clin. Exp. 2011, 60, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Chang, Y.J. The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle. J. Electromyogr. Kinesiol. 1997, 7, 3–13. [Google Scholar] [CrossRef]
Able-Bodied Mean ± SD n = 23 | Spinal Cord Injured Mean ± SD n = 18 | ||
---|---|---|---|
Age (years) | 27.0 ± 5.4 | 37.7 ± 13.7 | † |
Years Post Injury | 10.7 ± 8.6 | ||
Height (cm) | 174.9 ± 11.5 | 183.9 ± 6.4 | † |
Mass (kg) | 71.8 ± 14.7 | 86.3 ± 21.0 | † |
BMI (kg/m2) | 23.7 ± 2.5 | 25.4 ± 5.4 | |
Glycemic Biomarkers | |||
Glucose (mg/dL) | 91.6 ± 7.6 | 91.2 ± 12.3 | |
Insulin (µUI/L) | 6.8 ± 3.1 | 16.0 ± 13.6 | † |
G:I Ratio | 15.9 ± 6.3 | 9.4 ± 6.0 | † |
Lactate (mmol/L) | 1.0 ± 0.4 | 1.3 ± 0.6 | † |
Inflammatory Biomarkers | |||
C-Reactive Protein (mg/L) | 1.1 ± 1.3 | 7.8 ± 8.2 | † |
Uric Acid (mg/dL) | 4.6 ± 1.7 | 6.0 ± 2.1 | † |
Alkaline Phosphatase (UI/mL) | 52.9 ± 15.1 | 77.5 ± 17.8 | † |
Lipid Biomarkers | |||
Cholesterol (mg/dL) | 178.4 ± 25.1 | 185.8 ± 40.5 | |
Low-Density Lipoprotein (mg/dL) | 111.4 ± 26.6 | 140.7 ± 38.4 | † |
High-Density Lipoprotein (mg/dL) | 65.0 ± 16.9 | 41.2 ± 11.5 | † |
Triglycerides (mg/dL) | 92.5 ± 53.4 | 128.9 ± 102.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrie, M.A.; Kimball, A.L.; Shields, R.K. Acute Low Force Electrically Induced Exercise Modulates Post Prandial Glycemic Markers in People with Spinal Cord Injury. J. Funct. Morphol. Kinesiol. 2022, 7, 89. https://doi.org/10.3390/jfmk7040089
Petrie MA, Kimball AL, Shields RK. Acute Low Force Electrically Induced Exercise Modulates Post Prandial Glycemic Markers in People with Spinal Cord Injury. Journal of Functional Morphology and Kinesiology. 2022; 7(4):89. https://doi.org/10.3390/jfmk7040089
Chicago/Turabian StylePetrie, Michael A., Amy L. Kimball, and Richard K. Shields. 2022. "Acute Low Force Electrically Induced Exercise Modulates Post Prandial Glycemic Markers in People with Spinal Cord Injury" Journal of Functional Morphology and Kinesiology 7, no. 4: 89. https://doi.org/10.3390/jfmk7040089