The Influence of Knee Extensor and Ankle Plantar Flexor Strength on Single-Leg Standing Balance in Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.2.1. The Maximum Voluntary Isometric Contractions (MVIC) Test of the KE Muscle
2.2.2. The Maximum Voluntary Isometric Contractions (MVIC) Test of the AP Muscle
2.2.3. Single-Leg Standing Balance Test
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Falls. 2018. Available online: http://www.who.int/news-room/fact-sheets/detail/falls (accessed on 12 March 2023).
- Sitdhiraksa, N.; Piyamongkol, P.; Chaiyawat, P.; Chantanachai, T.; Ratta-Apha, W.; Sirikunchoat, J.; Pariwatcharakul, P. Prevalence and Factors Associated with Fear of Falling in Community-Dwelling Thai Elderly. Gerontology 2021, 67, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Jitapunkul, S.; Songkhla, M.N.; Chayovan, N.; Chirawatkul, A.; Choprapawon, C.; Kachondham, Y.; Buasai, S. Falls and their associated factors: A national survey of the Thai elderly. J. Med. Assoc. Thai 1998, 81, 233–242. [Google Scholar] [PubMed]
- Schoene, D.; Heller, C.; Aung, Y.N.; Sieber, C.C.; Kemmler, W.; Freiberger, E. A systematic review on the influence of fear of falling on quality of life in older people: Is there a role for falls? Clin. Interv. Aging 2019, 14, 701–719. [Google Scholar] [CrossRef] [PubMed]
- Soomar, S.M.; Dhalla, Z. Injuries and outcomes resulting due to falls in elderly patients presenting to the Emergency Department of a tertiary care hospital—A cohort study. BMC Emerg. Med. 2023, 23, 14. [Google Scholar] [CrossRef]
- Whipple, M.O.; Hamel, A.V.; Talley, K.M.C. Fear of falling among community-dwelling older adults: A scoping review to identify effective evidence-based interventions. Geriatr. Nurs. 2018, 39, 170–177. [Google Scholar] [CrossRef]
- Giovannini, S.; Brau, F.; Galluzzo, V.; Santagada, D.A.; Loreti, C.; Biscotti, L.; Laudisio, A.; Zuccalà, G.; Bernabei, R. Falls among Older Adults: Screening, Identification, Rehabilitation, and Management. Appl. Sci. 2022, 12, 7934. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef]
- Minniti, G.; Pescinini-Salzedas, L.M.; Minniti, G.A.d.S.; Laurindo, L.F.; Barbalho, S.M.; Vargas Sinatora, R.; Sloan, L.A.; Haber, R.S.d.A.; Araújo, A.C.; Quesada, K.; et al. Organokines, Sarcopenia, and Metabolic Repercussions: The Vicious Cycle and the Interplay with Exercise. Int. J. Mol. Sci. 2022, 23, 13452. [Google Scholar] [CrossRef]
- Rizzoli, R.; Reginster, J.Y.; Arnal, J.F.; Bautmans, I.; Beaudart, C.; Bischoff-Ferrari, H.; Biver, E.; Boonen, S.; Brandi, M.L.; Chines, A.; et al. Quality of life in sarcopenia and frailty. Calcif. Tissue Int. 2013, 93, 101–120. [Google Scholar] [CrossRef]
- Kim, B.; Youm, C.; Park, H.; Lee, M.; Choi, H. Association of Muscle Mass, Muscle Strength, and Muscle Function with Gait Ability Assessed Using Inertial Measurement Unit Sensors in Older Women. Int. J. Environ. Res. Public Health 2022, 19, 9901. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Okayama, A.; Nakayama, N.; Kashiwa, K.; Horinouchi, Y.; Fukusaki, H.; Nakamura, H.; Katayama, S. Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare 2022, 10, 192. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Bischoff-Ferrari, H. Considerations concerning the definition of sarcopenia. Osteoporos. Int. 2016, 27, 3139–3144. [Google Scholar] [CrossRef]
- Labanca, L.; Ghislieri, M.; Knaflitz, M.; Barone, G.; Bragonzoni, L.; Agostini, V.; Benedetti, M.G. Muscle synergies for the control of single-limb stance with and without visual information in young individuals. BMC Sport. Sci. Med. Rehabil. 2021, 13, 163. [Google Scholar] [CrossRef]
- Bok, S.-K.; Lee, T.H.; Lee, S.S. The Effects of Changes of Ankle Strength and Range of Motion According to Aging on Balance. Ann. Rehabil. Med. 2013, 37, 10–16. [Google Scholar] [CrossRef]
- de Oliveira, M.P.B.; Calixtre, L.B.; da Silva Serrão, P.R.M.; de Oliveira Sato, T.; de Medeiros Takahashi, A.C.; de Andrade, L.P. Reproducibility of isokinetic measures of the knee and ankle muscle strength in community-dwelling older adults without and with Alzheimer’s disease. BMC Geriatr. 2022, 22, 940. [Google Scholar] [CrossRef]
- Shin, Y.-J.; Kim, S.-g. Relationships among Lower Extremity Muscle Circumference, Proprioception, ROM, Muscle Strength, and Balance Control Ability in Young Adults. J. Korean Phys. Ther. 2022, 34, 168–174. [Google Scholar] [CrossRef]
- McCarthy, E.K.; Horvat, M.A.; Holtsberg, P.A.; Wisenbaker, J.M. Repeated chair stands as a measure of lower limb strength in sexagenarian women. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 1207–1212. [Google Scholar] [CrossRef]
- Wong, A.K.O.; Fung, H.J.W.; Pretty, S.P.; Laing, A.C.; Chan, A.H.; Mathur, S.; Zabjek, K.; Giangregorio, L.; Cheung, A.M. Ankle flexor/extensor strength and muscle density are complementary determinants of balance during dual-task engagement: The ankle quality study. JCSM Clin. Rep. 2023, 8, 12–23. [Google Scholar] [CrossRef]
- Makoto, K.; Keigo, T.; Tomoyuki, S.; Masaki, K. Estimation of quadriceps femoris muscle dysfunction in the early period after surgery of the knee joint using shear-wave elastography. BMJ Open Sport Exerc. Med. 2018, 4, e000381. [Google Scholar] [CrossRef]
- Kwon, O.-Y.; Choi, H.-S.; Yi, C.-H.; Kwon, H.-C. The Effects of Knee and Ankle Muscles Surrounding the Knee and Ankle Joints on One-Leg Static Standing Balance. J. Phys. Ther. Sci. 1998, 10, 7–12. [Google Scholar] [CrossRef]
- Hill, M.W.; Roberts, M.; Price, M.J.; Kay, A.D. Association between knee extensor and ankle plantarflexor muscle thickness and echo intensity with postural sway, mobility and physical function in older adults. Exp. Gerontol. 2021, 150, 111385. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Wilhelm, E.N.; Rech, A.; Minozzo, F.; Radaelli, R.; Pinto, R.S. Echo intensity independently predicts functionality in sedentary older men. Muscle Nerve 2017, 55, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Rech, A.; Radaelli, R.; Goltz, F.R.; da Rosa, L.H.; Schneider, C.D.; Pinto, R.S. Echo intensity is negatively associated with functional capacity in older women. Age 2014, 36, 9708. [Google Scholar] [CrossRef]
- Wilhelm, E.N.; Rech, A.; Minozzo, F.; Radaelli, R.; Botton, C.E.; Pinto, R.S. Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age 2014, 36, 9625. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Yoshida, S. Correlation between ankle plantar flexion strength and degree of body sway. J. Phys. Ther. Sci. 2022, 34, 40–43. [Google Scholar] [CrossRef]
- Moraux, A.; Canal, A.; Ollivier, G.; Ledoux, I.; Doppler, V.; Payan, C.; Hogrel, J.-Y. Ankle dorsi- and plantar-flexion torques measured by dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskelet. Disord. 2013, 14, 104. [Google Scholar] [CrossRef]
- Błażkiewicz, M.; Wit, A. Comparison of sensitivity coefficients for joint angle trajectory between normal and pathological gait. Acta Bioeng. Biomech. 2012, 14, 83–91. [Google Scholar]
- Billot, M.; Calvani, R.; Urtamo, A.; Sánchez-Sánchez, J.L.; Ciccolari-Micaldi, C.; Chang, M.; Roller-Wirnsberger, R.; Wirnsberger, G.; Sinclair, A.; Vaquero-Pinto, N.; et al. Preserving Mobility in Older Adults with Physical Frailty and Sarcopenia: Opportunities, Challenges, and Recommendations for Physical Activity Interventions. Clin. Interv. Aging 2020, 15, 1675–1690. [Google Scholar] [CrossRef]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative values for the unipedal stance test with eyes open and closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef]
- Riva, D.; Mamo, C.; Fanì, M.; Saccavino, P.; Rocca, F.; Momenté, M.; Fratta, M. Single stance stability and proprioceptive control in older adults living at home: Gender and age differences. J. Aging Res. 2013, 2013, 561695. [Google Scholar] [CrossRef]
- Boonwang, T.; Eungpinichpong, W.; Yimtae, K. Gender effect on various standing ability in elderly Thai population. Asia-Pac. J. Sci. Technol. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Bohannon, R.W. One-legged balance test times. Percept. Mot. Skills 1994, 78, 801–802. [Google Scholar] [CrossRef]
- Noohi, F.; Kinnaird, C.; De Dios, Y.; Kofman, I.; Wood, S.J.; Bloomberg, J.J.; Mulavara, A.P.; Sienko, K.H.; Polk, T.A.; Seidler, R.D. Deactivation of somatosensory and visual cortices during vestibular stimulation is associated with older age and poorer balance. PLoS ONE 2019, 14, e0221954. [Google Scholar] [CrossRef]
- Hafström, A. Perceived and Functional Balance Control Is Negatively Affected by Diminished Touch and Vibration Sensitivity in Relatively Healthy Older Adults and Elderly. Gerontol. Geriatr. Med. 2018, 4, 2333721418775551. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Larkin, P.A.; Cook, A.C.; Gear, J.; Singer, J. Decrease in timed balance test scores with aging. Phys. Ther. 1984, 64, 1067–1070. [Google Scholar] [CrossRef]
- Morioka, S.; Fukumoto, T.; Hiyamizu, M.; Matsuo, A.; Takebayashi, H.; Miyamoto, K. Changes in the equilibrium of standing on one leg at various life stages. Curr. Gerontol. Geriatr. Res. 2012, 2012, 516283. [Google Scholar] [CrossRef]
- Brockett, C.L.; Chapman, G.J. Biomechanics of the ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef]
- McGowan, C.P.; Neptune, R.R.; Kram, R. Independent effects of weight and mass on plantar flexor activity during walking: Implications for their contributions to body support and forward propulsion. J. Appl. Physiol. 2008, 105, 486–494. [Google Scholar] [CrossRef]
- Ting, L. Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture. Prog. Brain Res. 2007, 165, 299–321. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Hsu, W.-L.; Woollacott, M.H.; Chou, L.-S. Ankle dorsiflexor strength relates to the ability to restore balance during a backward support surface translation. Gait Posture 2013, 38, 812–817. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean ± SD |
---|---|
Age (years) | 67.83 ± 8.00 |
Body weight (kg) | 55.95 ± 10.44 |
Height (cm) | 154.48 ± 7.30 |
Body mass index; BMI (kg/m2) | 23.44 ± 3.94 |
Variables | Mean ± SD |
---|---|
MVIC of KE muscles (kg) | 25.76 ± 7.94 |
MVIC of AP muscles (kg) | 22.17 ± 7.20 |
%MVIC/BW of KE muscles | 46.69 ± 12.25 |
%MVIC/BW of AP muscles | 40.51 ± 12.24 |
Single-leg standing balance test with eye open; SSEO (s) | 38.82 ± 26.92 |
Single-leg standing balance test with eye closed; SSEC (s) | 5.11 ± 4.92 |
SSEO | SSEC | ||
---|---|---|---|
Demographic data Variables | Age | −0.262 * (p value = 0.013) | −0.303 ** (p value = 0.004) |
Weight | 0.049 (p value = 0.648) | 0.101 (p value = 0.122) | |
Height | 0.040 (p value = 0.711) | 0.050 (p value = 0.643) | |
BMI | 0.039 (p value = 0.713) | 0.112 (p value = 0.294) | |
MVIC of KE muscles | 0.483 ** (p value < 0.001) | 0.308 ** (p value < 0.001) | |
MVIC of AP muscles | 0.586 ** (p value < 0.001) | 0.416 ** (p value < 0.001) | |
%MVIC/BW of KE muscles | 0.588 ** (p value < 0.001) | 0.321 ** (p value < 0.001) | |
%MVIC/BW of AP muscles | 0.642 ** (p value < 0.001) | 0.424 ** (p value < 0.001) |
Model | Included Variables | Β | p Value | r | Adjusted r2 | SEE |
---|---|---|---|---|---|---|
1 | Constant | −18.352 | 0.018 * | 0.642 | 0.405 | 20.77 |
%MVIC/BW of AP muscles | 1.411 | <0.001 ** | ||||
2 | Constant | −32.010 | <0.001 ** | 0.682 | 0.452 | 19.92 |
%MVIC/BW of AP muscles | 0.988 | <0.001 ** | ||||
%MVIC/BW of KE muscles | 0.659 | 0.004 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapanya, W.; Maharan, S.; Amput, P.; Sangkarit, N.; Suwannakul, B. The Influence of Knee Extensor and Ankle Plantar Flexor Strength on Single-Leg Standing Balance in Older Women. J. Funct. Morphol. Kinesiol. 2023, 8, 67. https://doi.org/10.3390/jfmk8020067
Tapanya W, Maharan S, Amput P, Sangkarit N, Suwannakul B. The Influence of Knee Extensor and Ankle Plantar Flexor Strength on Single-Leg Standing Balance in Older Women. Journal of Functional Morphology and Kinesiology. 2023; 8(2):67. https://doi.org/10.3390/jfmk8020067
Chicago/Turabian StyleTapanya, Weerasak, Sinthuporn Maharan, Patchareeya Amput, Noppharath Sangkarit, and Boonsita Suwannakul. 2023. "The Influence of Knee Extensor and Ankle Plantar Flexor Strength on Single-Leg Standing Balance in Older Women" Journal of Functional Morphology and Kinesiology 8, no. 2: 67. https://doi.org/10.3390/jfmk8020067
APA StyleTapanya, W., Maharan, S., Amput, P., Sangkarit, N., & Suwannakul, B. (2023). The Influence of Knee Extensor and Ankle Plantar Flexor Strength on Single-Leg Standing Balance in Older Women. Journal of Functional Morphology and Kinesiology, 8(2), 67. https://doi.org/10.3390/jfmk8020067