Exercise Cardiac Load and Autonomic Nervous System Recovery during In-Season Training: The Impact on Speed Deterioration in American Football Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Methodology
2.3.1. Cardiac and ANS Measurement
2.3.2. Exercise Cardiac Load during In-Season Weekly Training
2.3.3. ANS Recovery
2.3.4. Maximum Running Speed
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Strengths and Limitations
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Freeman, J.V.; Dewey, F.E.; Hadley, D.M.; Myers, J.; Froelicher, V.F. Autonomic Nervous System Interaction with the Cardiovascular System During Exercise. Prog. Cardiovasc. Dis. 2006, 48, 342–362. [Google Scholar] [CrossRef]
- Jensen, J.L.; Marstrand, P.C.D.; Nielsen, J.B. Motor Skill Training and Strength Training Are Associated with Different Plastic Changes in the Central Nervous System. J. Appl. Physiol. 2005, 99, 1558–1568. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Lephart, S.M.; Karunakara, R.G. Effects of Rest Interval on Isokinetic Strength and Functional Performance after Short-Term High Intensity Training. Br. J. Sports Med. 1997, 31, 229. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Bompa, T.O. A Physiological Review of American Football. Sports Med. 1997, 23, 247–260. [Google Scholar] [CrossRef]
- Edwards, T.; Spiteri, T.; Piggott, B.; Haff, G.G.; Joyce, C. A Narrative Review of the Physical Demands and Injury Incidence in American Football: Application of Current Knowledge and Practices in Workload Management. Sports Med. 2018, 48, 45–55. [Google Scholar] [CrossRef]
- Kreher, J.B.; Schwartz, J.B. Overtraining Syndrome: A Practical Guide. Sports Health 2012, 4, 128–138. [Google Scholar] [CrossRef]
- Lehmann, M.; Foster, C.; Gastmann, U.; Keizer, H.; Steinacker, J.M. Definition, Types, Symptoms, Findings, Underlying Mechanisms, and Frequency of Overtraining and Overtraining Syndrome. In Overload, Performance Incompetence, and Regeneration in Sport; Lehmann, M., Foster, C., Gastmann, U., Keizer, H., Steinacker, J.M., Eds.; Springer: Boston, MA, USA, 1999; pp. 1–6. [Google Scholar] [CrossRef]
- Tiidus, P.M. (Ed.) Skeletal Muscle Damage and Repair; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar] [CrossRef]
- O’Reilly, K.P.; Warhol, M.J.; Fielding, R.A.; Frontera, W.R.; Meredith, C.N.; Evans, W.J. Eccentric Exercise-Induced Muscle Damage Impairs Muscle Glycogen Repletion. J. Appl. Physiol. 1987, 63, 252–256. [Google Scholar] [CrossRef]
- Howatson, G.; Milak, A. Exercise-Induced Muscle Damage Following a Bout of Sport Specific Repeated Sprints. J. Strength Cond. Res. 2009, 23, 2419–2424. [Google Scholar] [CrossRef]
- Pearce, A.J.; Sacco, P.; Byrnes, M.L.; Thickbroom, G.W.; Mastaglia, F.L. The Effects of Eccentric Exercise on Neuromuscular Function of the Biceps Brachii. J. Sci. Med. Sport 1998, 1, 236–244. [Google Scholar] [CrossRef]
- Flockhart, M.; Nilsson, L.C.; Tais, S.; Ekblom, B.; Apró, W.; Larsen, F.J. Excessive Exercise Training Causes Mitochondrial Functional Impairment and Decreases Glucose Tolerance in Healthy Volunteers. Cell Metab. 2021, 33, 957–970.e6. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef]
- Gabbett, T.J. The Training—Injury Prevention Paradox: Should Athletes Be Training Smarter and Harder? Br. J. Sports Med. 2016, 50, 273. [Google Scholar] [CrossRef]
- National Collegiate Athletics Association. NCAA Sports Sponsorship and Participation Rates Report (1956–57 through 2021–22); NCAA/06071983; National Collegiate Athletics Association: Indianapolis, IN, USA, 2022; p. 135. [Google Scholar]
- Cross, M.J.; Williams, S.; Trewartha, G.; Kemp, S.P.; Stokes, K.A. The Influence of In-Season Training Loads on Injury Risk in Professional Rugby Union. Int. J. Sports Physiol. Perform. 2016, 11, 350–355. [Google Scholar] [CrossRef]
- Rogalski, B.; Dawson, B.; Heasman, J.; Gabbett, T.J. Training and Game Loads and Injury Risk in Elite Australian Footballers. J. Sci. Med. Sport 2013, 16, 499–503. [Google Scholar] [CrossRef]
- Peck, J.; Wishon, M.J.; Wittels, H.; Lee, S.J.; Hendricks, S.; Davila, H.; Wittels, S.H. Single Limb Electrocardiogram Using Vector Mapping: Evaluation and Validation of a Novel Medical Device. J. Electrocardiol. 2021, 67, 136–141. [Google Scholar] [CrossRef]
- Speed, C.; Arneil, T.; Harle, R.; Wilson, A.; Karthikesalingam, A.; McConnell, M.; Phillips, J. Measure by Measure: Resting Heart Rate across the 24-Hour Cycle. PLoS Digit. Health 2023, 2, e0000236. [Google Scholar] [CrossRef]
- Bourdillon, N.; Yazdani, S.; Vesin, J.-M.; Schmitt, L.; Millet, G.P. RMSSD Is More Sensitive to Artifacts Than Frequency-Domain Parameters: Implication in Athletes’ Monitoring. J. Sports Sci. Med. 2022, 21, 260–266. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, I.-M. Simultaneous Localization and Capture with Velocity Information. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2935–2940. [Google Scholar] [CrossRef]
- Li, Q.; Young, M.; Naing, V.; Donelan, J.M. Walking Speed Estimation Using a Shank-Mounted Inertial Measurement Unit. J. Biomech. 2010, 43, 1640–1643. [Google Scholar] [CrossRef]
- Sampson, J.A.; Murray, A.; Williams, S.; Halseth, T.; Hanisch, J.; Golden, G.; Fullagar, H.H.K. Injury Risk-Workload Associations in NCAA American College Football. J. Sci. Med. Sport 2018, 21, 1215–1220. [Google Scholar] [CrossRef]
- Jalilvand, F.; Chapman, D.; Lockie, R. Strength and Conditioning Considerations for Collegiate American Football. J. Aust. Strength Cond. 2019, 27, 72–85. [Google Scholar]
- Manresa-Rocamora, A.; Flatt, A.A.; Casanova-Lizón, A.; Ballester-Ferrer, J.A.; Sarabia, J.M.; Vera-Garcia, F.J.; Moya-Ramón, M. Heart Rate-Based Indices to Detect Parasympathetic Hyperactivity in Functionally Overreached Athletes. A Meta-Analysis. Scand. J. Med. Sci. Sports 2021, 31, 1164–1182. [Google Scholar] [CrossRef]
- Mourot, L.; Bouhaddi, M.; Perrey, S.; Cappelle, S.; Henriet, M.T.; Wolf, J.P.; Rouillon, J.D.; Regnard, J. Decrease in Heart Rate Variability with Overtraining: Assessment by the Poincaré Plot Analysis. Clin. Physiol. Funct. Imaging 2004, 24, 10–18. [Google Scholar] [CrossRef]
- Burma, J.S.; Copeland, P.V.; Macaulay, A.; Khatra, O.; Smirl, J.D. Effects of High-Intensity Intervals and Moderate-Intensity Exercise on Baroreceptor Sensitivity and Heart Rate Variability during Recovery. Appl. Physiol. Nutr. Metab. 2020, 45, 1156–1164. [Google Scholar] [CrossRef]
- Sacha, J. Interaction between Heart Rate and Heart Rate Variability. Ann. Noninvasive Electrocardiol. 2014, 19, 207–216. [Google Scholar] [CrossRef]
- Dong, J.-G. The Role of Heart Rate Variability in Sports Physiology. Exp. Ther. Med. 2016, 11, 1531–1536. [Google Scholar] [CrossRef]
- Meyler, S.; Bottoms, L.; Wellsted, D.; Muniz-Pumares, D. Variability in Exercise Tolerance and Physiological Responses to Exercise Prescribed Relative to Physiological Thresholds and to Maximum Oxygen Uptake. Exp. Physiol. 2023, 108, 581–594. [Google Scholar] [CrossRef]
Mean (SD) | Median (Min, Max) | |
---|---|---|
Age (years) | 20.2 (1.5) | 20.0 (18.0, 23.0) |
Anthropometrics | ||
Weight (kg) | 94.38 (9.7) | 92.97 (77.1, 112.5) |
Height (m) | 1.85 (0.06) | 1.84 (1.75, 1.86) |
Body Mass Index (kg/m2) | 27.6 (2.3) | 27.5 (23.7, 32.5) |
Race/Ethnicity (%) | ||
NH White | 6.7 | |
NH Black | 80.0 | |
Other | 0.0 | |
Hispanic | 13.3 | |
Football Position (%) | ||
Cornerback | 16.7 | |
Defensive Back | 3.3 | |
Linebacker | 16.7 | |
Running Back | 23.3 | |
Safety | 6.7 | |
Tight End | 13.3 | |
Wide Receiver | 20.0 |
Mean (SD) | Median (Min, Max) | |
---|---|---|
Exercise Cardiac Load * | ||
Daily (acute exposure) | 21.8 (4.6) | 23.7 (8.4, 34.8) |
Weekly (cumulative exposure) | 108.7 (22.8) | 114.9 (43.9, 159.8) |
ANS Recovery | ||
Baseline HR (bpm) | 60.9 (8.6) | 59.8 (48.8, 112.2) |
SDNN (bpm) | 81.3 (2.0) | 81.2 (77.4, 84.2) |
rMSSD (bpm) | 70.1 (1.7) | 70.1 (66.2, 73.4) |
ANS Function | ||
Maximum Running Speed (mph) | 17.3 (1.4) | 17.2 (15.0, 22.0) |
β (SE) | 95% CI | Adjusted R2 | p-Value | |
---|---|---|---|---|
Exercise Cardiac Load * | ||||
Daily (acute exposure) | −0.11 (0.00) | [−0.12, −0.10] | 0.64 | 0.0000 |
Weekly (cumulative exposure) | −0.15 (0.04) | [−0.00, 0.72] | 0.73 | 0.0000 |
ANS Recovery | ||||
Baseline HR (bpm) | −0.45 (0.12) | [−0.70, −0.19] | 0.56 | 0.0011 |
SDNN (ms) | 0.32 (0.09) | [0.14, 0.50] | 0.55 | 0.0287 |
rMSSD (ms) | 0.35 (0.11) | [0.13, 0.57] | 0.52 | 0.0151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renaghan, E.; Wittels, H.L.; Feigenbaum, L.A.; Wishon, M.J.; Chong, S.; Wittels, E.D.; Hendricks, S.; Hecocks, D.; Bellamy, K.; Girardi, J.; et al. Exercise Cardiac Load and Autonomic Nervous System Recovery during In-Season Training: The Impact on Speed Deterioration in American Football Athletes. J. Funct. Morphol. Kinesiol. 2023, 8, 134. https://doi.org/10.3390/jfmk8030134
Renaghan E, Wittels HL, Feigenbaum LA, Wishon MJ, Chong S, Wittels ED, Hendricks S, Hecocks D, Bellamy K, Girardi J, et al. Exercise Cardiac Load and Autonomic Nervous System Recovery during In-Season Training: The Impact on Speed Deterioration in American Football Athletes. Journal of Functional Morphology and Kinesiology. 2023; 8(3):134. https://doi.org/10.3390/jfmk8030134
Chicago/Turabian StyleRenaghan, Eric, Harrison L. Wittels, Luis A. Feigenbaum, Michael Joseph Wishon, Stephanie Chong, Eva Danielle Wittels, Stephanie Hendricks, Dustin Hecocks, Kyle Bellamy, Joe Girardi, and et al. 2023. "Exercise Cardiac Load and Autonomic Nervous System Recovery during In-Season Training: The Impact on Speed Deterioration in American Football Athletes" Journal of Functional Morphology and Kinesiology 8, no. 3: 134. https://doi.org/10.3390/jfmk8030134
APA StyleRenaghan, E., Wittels, H. L., Feigenbaum, L. A., Wishon, M. J., Chong, S., Wittels, E. D., Hendricks, S., Hecocks, D., Bellamy, K., Girardi, J., Lee, S., Vo, T., McDonald, S. M., & Wittels, S. H. (2023). Exercise Cardiac Load and Autonomic Nervous System Recovery during In-Season Training: The Impact on Speed Deterioration in American Football Athletes. Journal of Functional Morphology and Kinesiology, 8(3), 134. https://doi.org/10.3390/jfmk8030134