Muscle Strength and Joint Range of Motion of the Spine and Lower Extremities in Female Prepubertal Elite Rhythmic and Artistic Gymnasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedures—Measurements of the Joint PROM
2.2.1. Knee Flexion (Test of the Quadriceps Femoris)
2.2.2. Hip Flexion—Straight Leg Raising Test (SLR) (Test of the Hamstring Muscles)
2.2.3. Hip Abduction (Test of the Adductor Muscles)
2.3. Testing Procedures—Mobility of the Spine
2.3.1. Trunk flexion (Stibor Test)
2.3.2. Cervical Spine
2.3.3. Flexion and Extension of the Cervical Spine
2.3.4. Lateral Flexion of the Cervical Spine
2.3.5. Rotation of the Cervical Spine
2.3.6. Lateral Flexion of the Trunk
2.3.7. Lumbar Spine (Shober Test)
2.3.8. Thoracic Spine (Ott Test)
2.4. Concentric Isokinetic Muscle Strength Measurements
Testing Protocol
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malina, R.M.; Baxter-Jones, A.D.; Armstrong, N.; Beunen, G.P.; Caine, D.; Daly, R.M.; Lewis, R.D.; Rogol, A.D.; Russell, K. Role of intensive training in the growth and maturation of artistic gymnasts. Sports Med. 2013, 43, 783–802. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.; Helms, P.J. Effects of Training at a Young Age: A Review of the Training of Young Athletes (TOYA) Study. Pediatr. Exerc. Sci. 1996, 8, 310–327. [Google Scholar] [CrossRef]
- Ford, P.; De Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The long-term athlete development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Bencke, J.; Damsgaard, R.; Saekmose, A.; Jørgensen, P.; Jørgensen, K.; Klausen, K. Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scand. J. Med. Sci. Sports 2002, 12, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Bajin, B. Talent identification program for Canadian female gymnasts. In World Identification Systems for Gymnastic Talent; Sports Psyche Editions: Montreal, QC, USA, 1987; pp. 34–44. [Google Scholar]
- Blimkie, C.J. Resistance training during pre- and early puberty: Efficacy, trainability, mechanisms, and persistence. Can. J. Sport Sci. 1992, 17, 264–279. [Google Scholar]
- Rowland, T.W. Children’s Exercise Physiology, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2005; pp. 80–84. [Google Scholar]
- Kirialanis, P.; Malliou, P.; Beneka, A.; Giannakopoulos, K. Occurrence of acute lower limb injuries in artistic gymnasts in relation to event and exercise phase. Br. J. Sports Med. 2003, 37, 137–139. [Google Scholar] [CrossRef]
- Paxinos, O.; Mitrogiannis, L.; Papavasiliou, A.; Manolarakis, E.; Siempenou, A.; Alexelis, V.; Karavasili, A. Musculoskeletal injuries among elite artistic and rhythmic Greek gymnasts: A ten-year study of 156 elite athletes. Acta. Orthop. Belg. 2019, 85, 145–149. [Google Scholar]
- Giannitsopoulou, E.; Zisi, V.; Kioumourtzoglou, E. Elite performance in rhythmic gymnastics: Do the changes in code of points affect the role of abilities? J. Hum. Mov. Stud. 2003, 45, 327–346. [Google Scholar]
- Cupisti, A.; D’Alessandro, C.; Evangelisti, I.; Piazza, M.; Galetta, F.; Morelli, E. Low back pain in competitive rhythmic gymnasts. J. Sports Med. Phys. Fitness 2004, 44, 49–53. [Google Scholar]
- Russo, L.; Palermi, S.; Dhahbi, W.; Kalinski, S.D.; Bragazzi, N.L.; Padulo, J. Selected components of physical fitness in rhythmic and artistic youth gymnast. Sport Sci. Health. 2021, 17, 415–421. [Google Scholar] [CrossRef]
- Hutchinson, M.R.; Laprade, R.F.; Burnett, Q.M.; Moss, R.; Terpstra, J. Injury surveillance at the USTA Boys’ Tennis Championships: A 6-yr study. Med. Sci. Sports Exerc. 1995, 27, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Garrick, J.G.; Requa, R.K. Epidemiology of women’s gymnastics injuries. Am. J. Sports Med. 1980, 8, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.R. Low back pain in elite rhythmic gymnasts. Med. Sci. Sports Exerc. 1999, 31, 1686–1688. [Google Scholar] [CrossRef]
- Tanchev, P.I.; Dzherov, A.D.; Parushev, A.D.; Dikov, D.M.; Todorov, M.B. Scoliosis in rhythmic gymnasts. Spine 2000, 25, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Ciullo, J.V.; Jackson, D.V. Pars interarticularis stress reaction, Spondylolysis, and spondylolisthesis in gymnasts. Clin. Sports Med. 1985, 4, 95–110. [Google Scholar] [CrossRef]
- Hall, S.J. Mechanical contribution to lumbar stress injuries in female gymnasts. Med. Sci. Sports Exerc. 1986, 18, 599–602. [Google Scholar] [CrossRef]
- Jackson, D.W.; Wiltse, L.L.; Cirincoine, R.J. Spondylolysis in the female gymnast. Clin. Orthop. Relat. Res. 1976, 117, 68–73. [Google Scholar] [CrossRef]
- Croisier, J.L.; Forthomme, B.; Namurois, M.H.; Vanderthommen, M.; Crielaard, J.M. Hamstring muscle strain recurrence and strength performance disorders. Am. J. Sports Med. 2002, 30, 199–203. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef]
- Mandroukas, A.; Vamvakoudis, E.; Metaxas, T.; Papadopoulos, P.; Kotoglou, K.; Stefanidis, P.; Christoulas, K.; Kyparos, A.; Mandroukas, K. Acute partial passive stretching increases range of motion and muscle strength. J. Sports Med. Phys. Fitness 2014, 54, 289–297. [Google Scholar]
- Van Dillen, L.R.; Bloom, N.J.; Gombatto, S.P.; Susco, T.M. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. Phys. Ther. Sport 2008, 9, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013; pp. 5–17. [Google Scholar]
- Pua, Y.H.; Wrigley, T.V.; Cowan, S.M.; Bennell, K.L. Intrarater test-retest reliability of hip range of motion and hip muscle strength measurements in persons with hip osteoarthritis. Arch. Phys. Med. Rehabil. 2008, 89, 1146–1154. [Google Scholar] [CrossRef]
- Tsolakis, C.; Bogdanis, G.C. Acute effects of two different warm-up protocols on flexibility and lower limb explosive performance in male and female high level athletes. J. Sports Sci. Med. 2012, 11, 669–675. [Google Scholar] [PubMed]
- Malmström, E.M.; Karlberg, M.; Melander, A.; Magnusson, M. Zebris versus Myrin: A comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: Intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine 2003, 28, E433–E440. [Google Scholar] [CrossRef]
- Antonaci, F.; Ghirmai, S.; Bono, G.; Nappi, G. Current methods for cervical spine movement evaluation: A review. Clin. Exp. Rheumatol. 2000, 18, S-45–S-52. [Google Scholar]
- Piva, S.R.; Goodnite, E.A.; Childs, J.D. Strength around the hip and flexibility of soft tissues in individuals with and without patellofemoral pain syndrome. J. Orthop. Sports. Phys. Ther. 2005, 35, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Wiktorsson, M.; Oberg, B.; Gillquist, J. Lower extremity goniometric measurements: A study to determine their reliability. Arch. Phys. Med. Rehabil. 1982, 63, 171–175. [Google Scholar] [PubMed]
- de Lucena, G.L.; dos Santos Gomes, C.; Guerra, R.O. Prevalence and associated factors of Osgood-Schlatter syndrome in a population-based sample of Brazilian adolescents. Am. J. Sports Med. 2011, 39, 415–420. [Google Scholar] [CrossRef]
- Elena, B.; Ingrid, P.Š.; Šárka, T.; Jan, V. Effects of an exercise program on the dynamic function of the spine in female students in secondary school. J. Phys. Educ. Sport 2018, 18, 831–839. [Google Scholar] [CrossRef]
- Bednár, R.; Líška, D.; Gurín, D.; Vnenčaková, J.; Melichová, A.; Koller, T.; Skladaný, Ľ. Low back pain in patients hospitalised with liver cirrhosis—A retrospective study. BMC Musculoskelet Disord. 2023, 24, 310. [Google Scholar] [CrossRef]
- American Academy of Orthopaedic Surgeons. Joint Motion: Method of Measurement and Recording; American Academy of Orthopaedic Surgeons: Chicago, IL, USA, 1965. [Google Scholar]
- Yoshida, A.; Kahanov, L. The effect of kinesio taping on lower trunk range of motions. Res. Sports Med. 2007, 15, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Shirado, O.; Suzuki, H.; Takahashi, M.; Kaneda, K.; Strax, T.E. Lumbar trunk muscle endurance testing: An inexpensive alternative to a machine for evaluation. Arch. Phys. Med. Rehabil. 1996, 77, 75–79. [Google Scholar] [CrossRef]
- Rezvani, A.; Ergin, O.; Karacan, I. Validity and reliability of the Metric Measurements in the Assessment of Lumbar Spine Motion in patients with Ankylosing Spondylitis. Spine 2012, 37, E1189–E1196. [Google Scholar] [CrossRef] [PubMed]
- Veis, A.; Kanásová, J.; Halmová, N. The level of body posture, the flexibility of backbone and flat feet in competition fitness in 8–11year old girls. Trends Sport Sci. 2022, 29, 5–11. [Google Scholar] [CrossRef]
- Georgopoulos, N.A.; Markou, K.B.; Theodoropoulou, A.; Vagenakis, G.A.; Benardot, D.; Leglise, M.; Dimopoulos, J.C.; Vagenakis, A.G. Height velocity and skeletal maturation in elite female rhythmic gymnasts. J. Clin. Endocrinol. Metab. 2001, 86, 5159–5164. [Google Scholar] [CrossRef] [PubMed]
- Boros, S. Dietary habits and physical self-concept of elite rhythmic gymnasts. Biomed. Hum. Kinet. 2009, 1, 1–2. [Google Scholar] [CrossRef]
- Hume, P.A.; Hopkins, W.G.; Robinson, D.M.; Robinson, S.M.; Hollings, S.C. Predictors of attainment in rhythmic sportive gymnastics. J. Sports Med. Phys. Fitness 1993, 33, 367–377. [Google Scholar]
- Georgopoulos, N.A.; Markou, K.B.; Theodoropoulou, A.; Benardot, D.; Leglise, M.; Vagenakis, A.G. Growth retardation in artistic compared with rhythmic elite female gymnasts. J. Clin. Endocrinol. Metab. 2002, 87, 3169–3173. [Google Scholar] [CrossRef]
- Siatras, T.; Skaperda, M.; Mameletzi, D. Anthropometric characteristics and delayed growth in young artistic gymnasts. Med. Probl. Perform. Art. 2009, 24, 91–96. [Google Scholar] [CrossRef]
- Douda, H.T.; Toubekis, A.G.; Avloniti, A.A.; Tokmakidis, S.P. Physiological and anthropometric determinants of rhythmic gymnastics performance. Int. J. Sports Physiol. Perform. 2008, 3, 41–54. [Google Scholar] [CrossRef]
- Claessens, A.L.; Lefevre, J.; Beunen, G.; Malina, R.M. The contribution of anthropometric characteristics to performance in elite female gymnasts. J. Sports Med. Phys. Fitness 1999, 39, 355–360. [Google Scholar] [PubMed]
- Bassa, H.; Michailidis, H.; Kotzamanidis, C.; Siatras, T.; Chatzikotoulas, K. Concentric and eccentric isokinetic knee torque in pre-pubeiscent male gymnasts. J. Hum. Mov. Stud. 2002, 42, 213–227. [Google Scholar]
- Jaric, S. Role of body size in the relation between muscle strength and movement performance. Exerc. Sport Sci. Rev. 2003, 31, 8–12. [Google Scholar] [CrossRef]
- Klentrou, P.; Plyley, M. Onset of puberty, menstrual frequency, and body fat in elite rhythmic gymnasts compared with normal controls. Br. J. Sports Med. 2003, 37, 490–494. [Google Scholar] [CrossRef]
- Georgopoulos, N.A.; Markou, K.B.; Theodoropoulou, A.; Paraskevopoulou, P.; Varaki, L.; Kazantzi, Z.; Leglise, M.; Vagenakis, A.G. Growth and pubertal development in elite female rhythmic gymnasts. J. Clin. Endocrinol. Metab. 1999, 84, 4525–4530. [Google Scholar] [CrossRef] [PubMed]
- Vamvakoudis, E.; Vrabas, I.S.; Galazoulas, C.; Stefanidis, P.; Metaxas, T.I.; Mandroukas, K. Effects of basketball training on maximal oxygen uptake, muscle strength, and joint mobility in young basketball players. J. Strength Cond. Res. 2007, 21, 930–936. [Google Scholar] [CrossRef]
- Stenevi-Lundgren, S.; Daly, R.M.; Lindén, C.; Gärdsell, P.; Karlsson, M.K. Effects of a daily school based physical activity intervention program on muscle development in prepubertal girls. Eur. J. Appl. Physiol. 2009, 105, 533–541. [Google Scholar] [CrossRef]
- Batista, A.; Garganta, R.; Ávila-Carvalho, L. Strength in young rhythmic gymnasts. J. Hum. Sport Exerc. 2017, 12, 1162–1175. [Google Scholar] [CrossRef]
- Alexander, M. The physiological characteristics of elite rhythmic sportive gymnasts. J. Hum. Mov. Stud. 1989, 17, 49–69. [Google Scholar]
- Frenker, R.; Hitzel, N. Predicting attainment in rhythmic sport gymnastics: A three-year longitudinal study. In Proceedings of the First International Olympic Committee Congress on Sports Medicine, Colorado Springs, CO, USA, 29 October–3 November 1989. [Google Scholar]
- Garay, A.L.D.; Levine, L.; Carter, J.E.L. Genetic and Anthropological Studies of Olympic Athletes; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Sinning, W.E.; Lindberg, G.D. Physical characteristics of college age women gymnasts. Res. Q. 1972, 43, 226–234. [Google Scholar] [CrossRef]
- Jastrjembskaia, N.; Titov, Y. Rhythmic Gymnastics; Echo Point Books & Media: Brattleboro, VT, USA, 2016. [Google Scholar]
- Fédération Internationale de Gymnastique. 2022–2024 Code of Points: Rhythmic Gymnastics. Available online: https://www.gymnastics.sport/publicdir/rules/files/en_2022-2024%20RG%20Code%20of%20Points.pdf (accessed on 12 May 2022).
- Mac-Thiong, J.M.; Labelle, H.; Berthonnaud, E.; Betz, R.R.; Roussouly, P. Sagittal spinopelvic balance in normal children and adolescents. Eur. Spine J. 2007, 16, 227–234. [Google Scholar] [CrossRef] [PubMed]
- d’Hemecourt, P.A.; Luke, A. Sport-specific biomechanics of spinal injuries in aesthetic athletes (dancers, gymnasts, and figure skaters). Clin. Sports Med. 2012, 31, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Janda, V. Muscles, Central Nervous Motor Regulation and Back Problems. In The Neurobiologic Mechanisms in Manipulative Therapy; Korr, I.M., Ed.; Springer: Boston, MA, USA, 1978; pp. 27–41. [Google Scholar] [CrossRef]
Rhythmic Gymnasts (RG) (n = 18) | Artistic Gymnasts (AG) (n = 18) | Control Group (CG) (n = 18) | |
---|---|---|---|
Age (years) | 11.14 ± 0.70 | 11.27 ± 0.99 + | 10.55 ± 0.42 |
Height (cm) | 142.6 ± 5.81 | 139.6 ± 5.85 | 145.33 ± 6.95 ++ |
Body mass (kg) | 31.2 ± 3.63 | 31.7 ± 3.21 | 42.1 ± 8.21 ### +++ |
Body mass index (Kg/m2) | 15.22 ± 1.76 | 16.67 ± 1.85 | 20.06 ± 2.90 ### +++ |
Years in training (years) | 4.03 ± 0.8 | 4.40 ± 0.5 | 0 |
Hours of daily training (hours) | 3.83 ± 0.65 * | 3.42 ± 0.28 | 0 |
RG | AG | CG | ||
---|---|---|---|---|
Quadriceps absolute values (Nm) | 60°·s−1 | 82.33 ± 13.3 | 79.85 ± 11.7 | 89.89 ± 25.0 |
180°·s−1 | 48.28 ± 8.9 ++ | 53.92 ± 7.9 # | 63.11 ± 16.6 | |
300°·s−1 | 34.28 ± 6.1 + | 34.85 ± 4.7 # | 44.17 ± 12.2 | |
Hamstring absolute values (Nm) | 60°·s−1 | 41.22 ± 7.0 | 41.31 ± 9.1 | 44.00 ± 11.7 |
180°·s−1 | 26.78 ± 5.1 | 27.31 ± 7.7 | 29.56 ± 7.0 | |
300°·s−1 | 18.00 ± 3.7 | 17.54 ± 5.9 | 21.56 ± 7.1 | |
Quadriceps relative to body mass values (Nm·kg−1BW) | 60°·s−1 | 2.63 ± 0.25 +++ | 2.51 ± 0.26 ## | 2.14 ± 0.40 |
180°·s−1 | 1.55 ± 0.19 | 1.69 ± 0.14 # | 1.50 ± 0.24 | |
300°·s−1 | 1.09 ± 0.14 | 1.09 ± 0.66 | 105 ± 0.19 | |
Hamstring relative to body mass values (Nm·kg−1BW) | 60°·s−1 | 1.32 ± 0.19 + | 1.29 ± 0.22 | 1.07 ± 0.30 |
180°·s−1 | 0.86 ± 0.19 | 0.85 ± 0.20 | 0.71 ± 0.18 | |
300°·s−1 | 0.58 ± 0.20 | 0.54 ± 0.16 | 0.51 ± 0.14 | |
Hamstings:Quadriceps ratio | 60°·s−1 | 50.07 ± 5.3 | 51.73 ± 8.3 | 48.95 ± 7.5 |
180°·s−1 | 55.34 ± 5.7 | 50.65 ± 9.7 | 46.84 ± 7.8 | |
300°·s−1 | 52.51 ± 6.1 | 50.33 ± 12.5 | 48.81 ± 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandroukas, A.; Metaxas, I.; Michailidis, Y.; Metaxas, T. Muscle Strength and Joint Range of Motion of the Spine and Lower Extremities in Female Prepubertal Elite Rhythmic and Artistic Gymnasts. J. Funct. Morphol. Kinesiol. 2023, 8, 153. https://doi.org/10.3390/jfmk8040153
Mandroukas A, Metaxas I, Michailidis Y, Metaxas T. Muscle Strength and Joint Range of Motion of the Spine and Lower Extremities in Female Prepubertal Elite Rhythmic and Artistic Gymnasts. Journal of Functional Morphology and Kinesiology. 2023; 8(4):153. https://doi.org/10.3390/jfmk8040153
Chicago/Turabian StyleMandroukas, Athanasios, Ioannis Metaxas, Yiannis Michailidis, and Thomas Metaxas. 2023. "Muscle Strength and Joint Range of Motion of the Spine and Lower Extremities in Female Prepubertal Elite Rhythmic and Artistic Gymnasts" Journal of Functional Morphology and Kinesiology 8, no. 4: 153. https://doi.org/10.3390/jfmk8040153
APA StyleMandroukas, A., Metaxas, I., Michailidis, Y., & Metaxas, T. (2023). Muscle Strength and Joint Range of Motion of the Spine and Lower Extremities in Female Prepubertal Elite Rhythmic and Artistic Gymnasts. Journal of Functional Morphology and Kinesiology, 8(4), 153. https://doi.org/10.3390/jfmk8040153