Oxygen Consumption, Ventilatory Thresholds, and Work Zones in Nordic Walking Competitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Nordic Walking Federation. The history of Nordic Walking. I. N. W. A. Available online: https://www.inwa-nordicwalking.com/the-history-of-nordic-walking/ (accessed on 10 June 2024).
- Boccia, G.; Zoppirolli, C.; Bortolan, L.; Schena, F.; Pellegrini, B. Shared and task-specific muscle synergies of Nordic walking and conventional walking. Scand. J. Med. Sci. Sports 2018, 28, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Martínez Lemos, R.I.; García García, O.; Serrano Gómez, V. Nordic walking y salud: Una revisión descriptiva. Cuadernos Psicol. Deporte. 2011, 11, 115–121. [Google Scholar]
- Hanson, S.; Jones, A. Is there evidence that walking groups have health benefits? A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Jurikova, J.; Kyzlink, J. Benefits of Nordic Walking. Discobolul 2020, 59, 484–495. [Google Scholar] [CrossRef]
- Grigoletto, A.; Mauro, M.; Toselli, S. Evaluation of the effectiveness of a nordicwalking and a resistance indoor training program: Anthropometric, body composition, and functional parameters in the middle-aged population. J. Funct. Morphol. Kinesiol. 2023, 8, 79. [Google Scholar] [CrossRef]
- Gomeñuka, N.A.; Bianchi Oliveira, H.; Soares da Silva, E.; Passos-Monteiro, E.; Gomes da Rosa, R.; Rodrigo Carvalho, A.; Rocha Costa, R.; Rodríguez Paz, M.C. Nordic walking training in elderly, a randomized clinical trial. Part II: Biomechanical and metabolic adaptations. Sports Med. Open 2020, 6, 3. [Google Scholar] [CrossRef]
- Golledge, J.; Maarij, K.; Moxon, J.V.; Beard, J.D.; Girold, S.; Wrang, H.; Morris, D.R. Systematic review and meta-analysis of clinical trials examining the benefit of exercise programmes using nordic walking in peripheral artery disease. Eur. J. Vasc. Endovasc. Surg. 2018, 56, 534e543. [Google Scholar] [CrossRef]
- Zurawik, M.A. Thematic analysis of the social aspects of Nordic walking: The instructors’ perspective. Hum. Mov. 2020, 21, 9–18. [Google Scholar] [CrossRef]
- Saller, M.; Nagengast, N.; Frisch, M.; Fuss, F.K. A review of biomechanical and histological effects of using poles in sports. Bioengineering 2023, 10, 497. [Google Scholar] [CrossRef]
- Russo, L.; Belli, G.; Di Blasio, A.; Lupu, E.; Larion, A.; Fischetti, F.; Montagnani, E.; Di Biase Arrivabene, P.; De Angelis, M. The impact of nordic walking pole length on gait kinematic parameters. J. Funct. Morphol Kinesiol. 2023, 8, 50. [Google Scholar] [CrossRef]
- Pellegrini, B.; Boccia, G.; Zoppirolli, C.; Rosa, R.; Stella, F.; Bortolan, L.; Rainoldi, A.; Schena, F. Muscular and metabolic responses to different Nordic walking techniques, when style matters. PLoS ONE 2018, 13, e0195438. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.A.; Smith, G. Energy expenditure and comfort during Nordic walking with different pole lengths. J. Strength Cond. Res. 2009, 23, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Verch, R.; Stoll, J.; Hadzic, M.; Quarmby, A.; Völler, H. Whole-Body EMS upper imposed walking and nordic walking on a treadmill—determination of exercise intensity to conventional exercise. Front. Physiol. 2021, 12, 715417. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Ha, Y. Estimation of energy expenditure of nordic walking: A crossover trial. BMC Sports Sci. Med. Rehabil. 2021, 13, 14. [Google Scholar] [CrossRef]
- Jürimaë, T.; Meema, K.; Karelson, K.; Purge, P.; Jürimaë, J. Intensity of Nordic Walking in young females with different peak O2 consumption. Clin. Physiol. Funct. Imaging. 2009, 29, 330–334. [Google Scholar] [CrossRef]
- Giovanelli, N.; Mari, L.; Patini, A.; Lazzer, S. Energetics and mechanics of steep treadmill versus overground pole walking: A pilot study. Int. J. Sports Physiol. Perform. 2022, 17, 1037–1043. [Google Scholar] [CrossRef]
- Mendia-Iztueta, I.; Monahan, K.; Kyröläinen, H.; Hynynen, E. Assessment of heart rate variability thresholds from incremental treadmill tests in five cross-country skiing techniques. PLoS ONE 2016, 11, e0145875. [Google Scholar] [CrossRef]
- Roy, M.; Grattard, V.; Dinet, C.; Soares, A.V.; Decavel, P.; Sagawa, Y.J. Nordic walking influence on biomechanical parameters: A sys tematic review. Eur. J. Phys. Rehabil. Med. 2020, 56, 607–615. [Google Scholar] [CrossRef]
- Pérez-Soriano, P.; Encarnación-Martínez, A.; Aparicio-Aparicio, I.; Giménez, J.V.; Llana-Belloch, S. Nordic Walking: A systematic review. Eur. J. Hum. Mov. 2014, 33, 26–45. [Google Scholar]
- Mahood, N.V.; Kenefick, R.W.; Kertzer, R.; Quinn, T.J. Physiological determinants of cross-country ski racing performance. Med. Sci. Sports Exerc. 2001, 33, 1379–1384. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; Foster, C.; Seiler, S.; Lucia, A. Impact of training intensity distribution on performance in endurance athletes. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Casado, A.; González-Mohíno, F.; González-Ravé, J.M.; Foster, C. Training periodization, methods, intensity distribution, and volume in highly trained and elite distance runners: A systematic review. Int. J. Sports Physiol. Perform. 2022, 17, 820–833. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Sandbakk, O.; Enoksen, E.; Seiler, S.; Tønnessen, E. Crossing the golden training divide: The science and practice of training world-class 800- and 1500-m runners. Sports Med. 2021, 51, 1835–1854. [Google Scholar] [CrossRef]
- Etxebarria, N.; Spratford, W.; Iriberri, J.; Ross, M.; Gomez-Ezeiza, J.; Pyne, D. Energetics in elite race walkers. Eur. J. Sport Sci. 2021, 22, 1149–1155. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults: A Scientific Statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
- Howley, E.T.; Bassett, D.R.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.L.; Sperlich, B. The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 2015, 6, 295. [Google Scholar] [CrossRef]
- Tonnessen, E.; Sylta, O.; Haugen, T.A.; Hem, E.; Svendsen, I.S.; Seiler, K.S. The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS ONE 2014, 9, e101796. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, B.; Benczenleitner, O.; Toth, L. The Norwegian double-threshold method in distance running: Systematic literature review. Sci. J. Sport Perform. 2024, 3, 38–46. [Google Scholar] [CrossRef]
- Jódar-Reverte, M.; Paredes-Ruiz, M.J.; Ferrer-López, V.; Martínez-González-Moro, I. Determining factors of physical performance in an exercise stress test in women practicing nordic walking. Sport Mont. 2020, 18, 3–6. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kawamura, M.; Tomita, H.; Kamamoto, S. Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill. J. Physiol. Anthropol. 2013, 32, 2. [Google Scholar] [CrossRef] [PubMed]
- Wiacek, M.; Natora, J.; Zubrzycki, I.Z.; Tomasiuk, R. Physiological Responses Associated with Nordic-Walking and walking in middle-aged women. Int. J. Sports Med. 2023, 44, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Dechman, G.; Appleby, J.; Carr, M.; Haire, M. Comparison of treadmill and over-ground Nordic walking. Eur. J. Sport. Sci. 2012, 12, 36–42. [Google Scholar] [CrossRef]
- Anselmi, F.; Cavigli, L.; Pagliaro, A.; Valente, S.; Valentini, F.; Cameli, M.; Focardi, M.; Mochi, N.; Dendale, P.; Hansen, D.; et al. The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. Scand. J. Med. Sci. Sports. 2021, 31, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, T.; Sanders, D. Demands of professional cycling races: Influence of race category and result. Eur. J. Sport Sci. 2021, 21, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Seiler, K.S.; Kjerland, G.O. Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an “optimal” distribution? Scand. J. Med. Sci. Sports. 2006, 16, 49–56. [Google Scholar] [CrossRef]
- Neufeld, E.V.; Wadowski, J.; Boland, D.M.; Dolezal, B.A.; Cooper, C.B. Heart Rate Acquisition and Threshold-Based Training Increases Oxygen Uptake at Metabolic Threshold in Triathletes: A Pilot Study. Int. J. Exerc. Sci. 2019, 1-12, 144–154. [Google Scholar]
- Ronconi, M.; Alvero-Cruz, J.R. Respuesta de la frecuencia cardiaca y consumo de oxígeno de atletas varones en competiciones de duatlón sprint. Apunts. Med. Esport. 2011, 46, 183–188. [Google Scholar] [CrossRef]
- Giovanelli, N.; Pellegrini, B.; Bortolan, L.; Mari, L.; Schena, F.; Lazzer, S. Do poles really “save the legs” during uphill pole walking at different intensities? Eur. J. Appl. Physiol. 2023, 123, 2803–2812. [Google Scholar] [CrossRef]
PARTICIPANTS | |||||||
---|---|---|---|---|---|---|---|
Nº 1 | Nº 2 | Nº 3 | Nº 4 | Mean | SD | VC (%) | |
Gender | Male | Female | Male | Male | |||
Category | Cadet | Veteran | Veteran | Veteran | |||
Aged (Years) | 15 | 55 | 57 | 56 | 45.75 | 17.77 | 44.84 |
Years NW | 2 | 8 | 6 | 5 | 5.25 | 2.17 | 47.62 |
Weekly hours | 6 | 8 | 8 | 7 | 7.3 | 0.96 | 13.20 |
Weight (Kg) | 60.2 | 57.6 | 84.2 | 85.6 | 71.9 | 13.04 | 20.94 |
Height (cm) | 175.5 | 165.8 | 178 | 176 | 173.8 | 4.73 | 3.14 |
Waist circumference (cm) | 72 | 74 | 92 | 94 | 83 | 10.05 | 13.98 |
Hip circumference (cm) | 90 | 92 | 97 | 99 | 94.5 | 3.64 | 4.45 |
BMI (Kg/m2) | 19.55 | 20.95 | 26.57 | 27.63 | 23.675 | 3.48 | 16.98 |
Fat percentage (%) | 14.5 | 21.5 | 20 | 17.4 | 18.35 | 2.66 | 16.76 |
PARTICIPANTS | Nº 1 | Nº 2 | Nº 3 | Nº 4 | Mean | SD | CV |
---|---|---|---|---|---|---|---|
TMHR (bbm) | 205 | 165 | 163 | 164 | 174.3 | 20.5 | 11.8 |
HR max (bbm) | 208 | 178 | 151 | 163 | 175.0 | 24.6 | 14.1 |
% TMHR | 101 | 107 | 92 | 99 | 99.8 | 6.2 | 6.2 |
RER | 1.14 | 1.12 | 1.14 | 1.11 | 1.1 | 0.0 | 1.3 |
VO2 peak (mL/Kg/min) | 58 | 39 | 37 | 46 | 45.0 | 9.5 | 21.1 |
Maximum ventilation (L/min) | 125 | 65.7 | 101 | 150 | 110.4 | 35.9 | 32.5 |
Maximum velocity (Km/h) | 16 | 13.3 | 13.8 | 13.1 | 14.1 | 1.3 | 9.5 |
HR In VT1 (bbm) | 160 | 132 | 119 | 127 | 134.5 | 17.8 | 13.3 |
% HR max in VT1 | 76 | 74 | 78 | 78 | 76.5 | 1.9 | 2.5 |
VO2 in VT1 (mL/Kg/min) | 38 | 27 | 25 | 28 | 29.5 | 5.8 | 19.7 |
% VO2 max in VT1 | 65 | 69 | 67.6 | 61 | 65.7 | 3.5 | 5.4 |
VelocIty in VT1 (Km/h) | 9.9 | 8.2 | 9 | 8.1 | 8.8 | 0.8 | 9.5 |
HR in VT2 (bbm) | 200 | 165 | 143 | 157 | 166.3 | 24.3 | 14.6 |
% HR max in VT2 | 96 | 92 | 94 | 96 | 94.5 | 1.9 | 2.0 |
VO2 in VT2 (mL/Kg/min) | 56 | 38 | 35 | 44 | 43.3 | 9.3 | 21.5 |
% VO2 max in VT2 | 96 | 97 | 94 | 95.6 | 95.7 | 1.2 | 1.3 |
Velocity in VT2 (Km/h) | 14.7 | 12 | 12.3 | 12.6 | 12.9 | 1.2 | 9.5 |
Participant | ZONE1 <HR VT1 | ZONE 2a HR VT1 − (VT1 + VT2)/2 | ZONE 2b (VT1 + VT2)/2 − HR VT1 | ZONE 3 >HR VT2 |
---|---|---|---|---|
Nº 1 | <160 | 160–180 | 181–200 | >200 |
Nº 2 | <132 | 132–148 | 149–165 | >165 |
Nº 3 | <119 | 119–131 | 132–143 | >143 |
Nº 4 | <127 | 127–139 | 140–157 | >157 |
HR Mean | Nº | S 1 | S 2 | S 3 | S 4 | S 5 | S 6 | S 7 | S 8 | Means ± SD |
---|---|---|---|---|---|---|---|---|---|---|
HR mean (bbm) | 1 | 168.5 | 162.2 | 167.9 | 151.5 | * | * | 154.9 | 138.3 | 157.2 ± 11.5 |
2 | 152.7 | 155.7 | 155.1 | 152.7 | 145.2 | 142.8 | 143.7 | 149.4 | 149.7 ± 5.2 | |
3 | 142.4 | 142.6 | 143.2 | 141.4 | 141 | 133.8 | 136 | 133.6 | 139.3 ± 4.1 | |
4 | 146.1 | 154 | 149.3 | 161.7 | 153.5 | 152 | 155.1 | 158.7 | 153.8 ± 4.9 | |
% HR max | 1 | 81.0 | 78.0 | 80.7 | 72.8 | * | * | 74.5 | 66.5 | 75.6 ± 5.5 |
2 | 85.8 | 87.5 | 87.1 | 85.8 | 81.6 | 80.2 | 80.7 | 83.9 | 84.1 ± 2.9 | |
3 | 94.3 | 94.4 | 94.8 | 93.6 | 93.4 | 88.6 | 90.1 | 88.5 | 92.2 ± 2.7 | |
4 | 89.6 | 94.5 | 91.6 | 99.2 | 94.2 | 93.3 | 95.2 | 97.4 | 94.4 ± 3.0 | |
Work Zones | 1 | Z2a | Z2a | Z2a | Z1 | * | * | Z1 | Z1 | |
2 | Z2b | Z2b | Z2b | Z2b | Z2a | Z2a | Z2a | Z2b | ||
3 | Z2b | Z2b | Z2b | Z2b | Z2b | Z2b | Z2b | Z2b | ||
4 | Z2b | Z2b | Z2b | Z3 | Z2b | Z2b | Z2b | Z3 |
HR Peak | Nº | S 1 | S 2 | S 3 | S 4 | S 5 | S 6 | S 7 | S 8 | Means ± SD |
---|---|---|---|---|---|---|---|---|---|---|
HR (bbm) | 1 | 185 | 178 | 192 | 160 | * | * | 189 | 151 | 175.8 ± 16.7 |
2 | 161 | 162 | 170 | 170 | 166 | 156 | 150 | 156 | 161.4 ± 7.2 | |
3 | 147 | 148 | 146 | 147 | 147 | 140 | 142 | 138 | 144.4 ± 3.8 | |
4 | 158 | 157 | 161 | 165 | 161 | 157 | 161 | 163 | 160.4 ± 2.9 | |
% HR max | 1 | 88.9 | 85.6 | 92.3 | 76.9 | * | * | 90.9 | 72.6 | 84.5 ± 8.0 |
2 | 90.4 | 91.0 | 95.5 | 95.5 | 93.3 | 87.6 | 84.3 | 87.6 | 90.7 ± 4.0 | |
3 | 97.4 | 98.0 | 96.7 | 97.4 | 97.4 | 92.7 | 94.0 | 91.4 | 95.6 ± 2.5 | |
4 | 96.9 | 96.3 | 98.8 | 101.2 | 98.8 | 96.3 | 98.8 | 100.0 | 98.4 ± 1.8 | |
Work zones | 1 | Z2b | Z2a | Z2b | Z2a | * | * | Z2b | Z2a | |
2 | Z2b | Z2b | Z3 | Z3 | Z3 | Z2b | Z2b | Z2b | ||
3 | Z3 | Z3 | Z3 | Z3 | Z3 | Z2b | Z2b | Z2b | ||
4 | Z3 | Z3 | Z3 | Z3 | Z3 | Z3 | Z3 | Z3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serna-Martínez, M.; Ribes-Hernández, S.; Martínez-González-Moro, I. Oxygen Consumption, Ventilatory Thresholds, and Work Zones in Nordic Walking Competitors. J. Funct. Morphol. Kinesiol. 2024, 9, 171. https://doi.org/10.3390/jfmk9030171
Serna-Martínez M, Ribes-Hernández S, Martínez-González-Moro I. Oxygen Consumption, Ventilatory Thresholds, and Work Zones in Nordic Walking Competitors. Journal of Functional Morphology and Kinesiology. 2024; 9(3):171. https://doi.org/10.3390/jfmk9030171
Chicago/Turabian StyleSerna-Martínez, María, Sandra Ribes-Hernández, and Ignacio Martínez-González-Moro. 2024. "Oxygen Consumption, Ventilatory Thresholds, and Work Zones in Nordic Walking Competitors" Journal of Functional Morphology and Kinesiology 9, no. 3: 171. https://doi.org/10.3390/jfmk9030171
APA StyleSerna-Martínez, M., Ribes-Hernández, S., & Martínez-González-Moro, I. (2024). Oxygen Consumption, Ventilatory Thresholds, and Work Zones in Nordic Walking Competitors. Journal of Functional Morphology and Kinesiology, 9(3), 171. https://doi.org/10.3390/jfmk9030171