Circadian Rhythm and Physical Fatigue Separately Influence Cognitive and Physical Performance in Amateur Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Outcomes
2.2.1. Cognitive Tasks—Baseline Measurements
2.2.2. Isokinetic Strength Evaluation Test—Fatigue Protocol
2.2.3. Running Fatigue Protocol
2.2.4. Hand Grip Dynamometry
2.2.5. Cognitive Tasks—Post Fatigue Protocol and Perceived Exertion Scale
2.3. Statistics and Data Analysis
3. Results
3.1. Measures of Cognitive Performance
3.2. Physical Parameters
3.3. Correlation Analysis
4. Discussion
4.1. CR and Cognitive Performance
4.2. Physical Fatigue and Cognitive Performance
4.3. CR and Physical Parameters
5. Conclusions
6. Limitations and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, G.; Reilly, T. Circadian variation in sports performance. Sports Med. 1996, 21, 292–312. [Google Scholar] [CrossRef] [PubMed]
- TTeo, W.; Newton, M.J.; McGuigan, M.R. Circadian rhythms in exercise performance: Implications for hormonal and muscular adaptation. J. Sports Sci. Med. 2011, 10, 600–606. [Google Scholar]
- Hayes, L.D.; Bickerstaff, G.F.; Baker, J.S. Interactions of cortisol, testosterone, and resistance training: Influence of circadian rhythms. Chronobiol. Int. 2010, 27, 675–705. [Google Scholar] [CrossRef] [PubMed]
- Blatter, K.; Cajochen, C. Circadian rhythms in cognitive performance: Methodological constraints, protocols, theoretical underpinnings. Physiol. Behav. 2007, 90, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Petruzzello, S.J.; Han, M.; Nowell, P.J.J. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. J. Sport Exerc. Psychol. 1997, 19, 249–277. [Google Scholar]
- Drust, B.; Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. Circadian rhythms in sports performance—An update. Chronobiol. Int. 2005, 22, 21–44. [Google Scholar] [CrossRef]
- Reilly, T. Human circadian rhythms and exercise. Crit. Rev. Biomed. Eng. 1990, 18, 165–180. [Google Scholar]
- Vitošević, B. The circadian clock and human athletic performance. Bull. Nat. Sci. Res. 2017, 7. [Google Scholar] [CrossRef]
- Kalén, A.; Bisagno, E.; Musculus, L.; Raab, M.; Pérez-Ferreirós, A.; Williams, A.M.; Araújo, D.; Lindwall, M.; Ivarsson, A. The role of domain-specific and domain-general cognitive functions and skills in sports performance: A meta-analysis. Psychol. Bull. 2021, 147, 1290–1308. [Google Scholar] [CrossRef]
- Müller, S.; Abernethy, B.; Farrow, D. How do world-class cricket batsmen anticipate a bowler’s intention? Q. J. Exp. Psychol. 2006, 59, 2162–2186. [Google Scholar] [CrossRef]
- Williams, A.M.; Ward, P.; Knowles, J.M.; Smeeton, N.J. Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. J. Exp. Psychol. Appl. 2002, 8, 259. [Google Scholar] [CrossRef]
- Wright, K.P., Jr.; Hull, J.T.; Czeisler, C.A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R1370–R1377. [Google Scholar] [CrossRef]
- Folkard, S.; Monk, T.H. Circadian rhythms in human memory. Br. J. Psychol. 1980, 71, 295–307. [Google Scholar] [CrossRef]
- Ramírez, C.; Talamantes, J.; García, A.; Morales, M.; Valdez, P.; Menna-Barreto, L. Circadian rhythms in phonological and visuospatial storage components of working memory. Biol. Rhythm. Res. 2006, 37, 433–441. [Google Scholar] [CrossRef]
- Lotze, M.; Wittmann, M.; von Steinbüchel, N.; Pöppel, E.; Roenneberg, T. Daily rhythm of temporal resolution in the auditory system. Cortex 1999, 35, 89–100. [Google Scholar] [CrossRef]
- Edwards, B.; Waterhouse, J.; Reilly, T.J.C.I. The effects of circadian rhythmicity and time-awake on a simple motor task. Chronobiol. Int. 2007, 24, 1109–1124. [Google Scholar] [CrossRef]
- Jo, D.; Yoon, G.; Kim, O.Y.; Song, J. A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction. Biomedicine & Pharmacotherapy. Biomed. Pharmacother. 2022, 147, 112636. [Google Scholar]
- Gligoroska, J.P.; Manchevska, S. The effect of physical activity on cognition—Physiological mechanisms. Mater. Soc. Med. 2012, 24, 198–202. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and peripheral fatigue in physical exercise explained: A narrative review. Int. J. Environ. Res. Public Health 2022, 19, 3909. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Akioma, M.; Yuan, Z. Relationship between circadian rhythm and brain cognitive functions. Front. Optoelectron. 2021, 14, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Blain, G.M.; Proctor, L.T.; Sebranek, J.J.; Pegelow, D.F.; Dempsey, J.A. Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J. Physiol. 2011, 589, 5299–5309. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Stephane, P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur. J. Appl. Physiol. 2008, 102, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Bigliassi, M.; Filho, E. Functional significance of the dorsolateral prefrontal cortex during exhaustive exercise. Biol. Psychol. 2022, 175, 108442. [Google Scholar] [CrossRef]
- Kimura, D.; Hosokawa, T.; Ujikawa, T.; Ito, T. Effects of different exercise intensities on prefrontal activity during a dual task. Sci. Rep. 2022, 12, 13008. [Google Scholar] [CrossRef]
- Nassis, G.P.; Brito, J.; Figueiredo, P.; Gabbett, T.J. Injury prevention training in football: Let’s bring it to the real world. Br. J. Sports Med. 2019, 53, 1328–1329. [Google Scholar] [CrossRef]
- Özdemir, R.A.; Kirazcı, S.; Uğraş, A. Simple reaction time and decision making performance after different physical workloads: An examination with elite athletes. J. Hum. Sci. 2010, 7, 655–670. [Google Scholar]
- Ozyemisci-Taskiran, O.; Gunendi, Z.; Bolukbasi, N.; Beyazova, M. The effect of a single session submaximal aerobic exercise on premotor fraction of reaction time: An electromyographic study. Clin. Biomech. 2008, 23, 231–235. [Google Scholar] [CrossRef]
- Ando, S.; Kimura, T.; Hamada, T.; Kokubu, M.; Moritani, T.; Oda, S. Increase in reaction time for the peripheral visual field during exercise above the ventilatory threshold. Eur. J. Appl. Physiol. 2005, 94, 461–467. [Google Scholar] [CrossRef]
- Facer-Childs, E.R.; Boiling, S.; Balanos, G.M. The effects of time of day and chronotype on cognitive and physical performance in healthy volunteers. Sports Med.-Open 2018, 4, 47. [Google Scholar] [CrossRef]
- Vidueira, V.F.; Booth, J.N.; Saunders, D.H.; Sproule, J.; Turner, A.P. Circadian preference and physical and cognitive performance in adolescence: A scoping review. Chronobiol. Int. 2023, 40, 1296–1331. [Google Scholar] [CrossRef]
- Reid, K.J.; McGee-Koch, L.L.; Zee, P.C. Cognition in circadian rhythm sleep disorders. Prog. Brain Res. 2011, 190, 3–20. [Google Scholar]
- Dambroz, F.; Clemente, F.M.; Teoldo, I. The effect of physical fatigue on the performance of soccer players: A systematic review. PLoS ONE 2022, 17, e0270099. [Google Scholar] [CrossRef]
- Touitou, Y.; Smolensky, M.H.; Portaluppi, F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 2006, 23, 1083–1096. [Google Scholar] [CrossRef]
- Carpenter, J.S.; Andrykowski, M.A. Psychometric evaluation of the Pittsburgh sleep quality index. J. Psychosom. Res. 1998, 45, 5–13. [Google Scholar] [CrossRef]
- Reilly, T.; Atkinson, G.; Edwards, B.; Waterhouse, J.; Farrelly, K.; Fairhurst, E. Diurnal Variation in Temperature, Mental and Physical Performance, and Tasks Specifically Related to Football (Soccer). Chronobiol. Int. 2007, 24, 507–519. [Google Scholar] [CrossRef]
- Edwards, B.J.; Lindsay, K.; Waterhouse, J. Effect of time of day on the accuracy and consistency of the badminton serve. Ergonomics 2005, 48, 1488–1498. [Google Scholar] [CrossRef]
- Mueller, S.T.; Piper, B.J. The psychology experiment building language (PEBL) and PEBL test battery. J. Neurosci. Methods 2014, 222, 250–259. [Google Scholar] [CrossRef]
- Tsaklis, P. Isokinetic evaluation of the knee extensors and flexors anaerobic capacity. Isokinet. Exerc. Sci. 2002, 10, 69–72. [Google Scholar] [CrossRef]
- Tsatalas, T.; Giakas, G.; Spyropoulos, G.; Paschalis, V.; Nikolaidis, M.G.; Tsaopoulos, D.E.; Theodorou, A.A.; Jamurtas, A.Z.; Koutedakis, Y. The effects of muscle damage on walking biomechanics are speed-dependent. Eur. J. Appl. Physiol. 2010, 110, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Tsatalas, T.; Karampina, E.; Mina, M.A.; Patikas, D.A.; Laschou, V.C.; Pappas, A.; Jamurtas, A.Z.; Koutedakis, Y.; Giakas, G. Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage. Sports 2021, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Tsaklis, P. A method for modification of aerobic training intensity for special and general populations. Gazz. Medica Ital. 2020, 179, 314–315. [Google Scholar] [CrossRef]
- Gerodimos, V. Reliability of handgrip strength test in basketball players. J. Hum. Kinet. 2012, 31, 25. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.R.; Regan, J.; Shrader, J.A.; Liwang, J.; Ross, A.; Kumar, S.; Saligan, L.N. Cognitive and motor aspects of cancer-related fatigue. Cancer Med. 2019, 8, 5840–5849. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Nogueira, N.G.; de Paula Ferreira, B.; Narciso, F.V.; Parma, J.O.; de Assis Leão, S.E.; Lage, G.M.; Fernandes, L.A. Influence of Chronotype on Motor Behavior in Healthy Individuals: Analyses of Manual Dexterity in Different Times of the Day. Motor Control 2021, 25, 423–436. [Google Scholar] [CrossRef]
- Rulleau, T.; Mauvieux, B.; Toussaint, L. Influence of Circadian Rhythms on the Temporal Features of Motor Imagery for Older Adult Inpatients. Arch. Phys. Med. Rehabil. 2015, 96, 1229–1234. [Google Scholar] [CrossRef]
- Matchock, R.L.; Mordkoff, J.T. Chronotype and time-of-day influences on the alerting, orienting, and executive components of attention. Exp. Brain Res. 2009, 192, 189–198. [Google Scholar] [CrossRef]
- Bonnefond, A.; Rohmer, O.; Hoeft, A.; Muzet, A.; Tassi, P. Interaction of age with time of day and mental load in different cognitive tasks. Percept. Mot. Ski. 2003, 96 (Suppl. S3), 1223–1236. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Basso, J.C.; Suzuki, W.A. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef]
- Schmiedek, F.; Lövdén, M.; Lindenberger, U. Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Front. Aging Neurosci. 2010, 2, 27. [Google Scholar] [CrossRef]
- Hendy, A.M.; Andrushko, J.W.; Della Gatta, P.A.; Teo, W.-P. Acute Effects of High-Intensity Aerobic Exercise on Motor Cortical Excitability and Inhibition in Sedentary Adults. Front. Psychol. 2022, 13, 814633. [Google Scholar] [CrossRef]
- Yen, S.; Wu, H.-Y.; Wang, Y.; Huang, C.-M.; Wu, C.W.; Chen, J.-H.; Liao, L.-D. Revisiting the effects of exercise on cerebral neurovascular functions in rats using multimodal assessment techniques. iScience 2023, 26, 106354. [Google Scholar] [CrossRef]
- Kuo, H.I.; Hsieh, M.-H.; Lin, Y.-T.; Kuo, M.-F.; Nitsche, M.A. A single bout of aerobic exercise modulates motor learning performance and cortical excitability in humans. Int. J. Clin. Health Psychol. 2023, 23, 100333. [Google Scholar] [CrossRef]
- Smolarek, A.d.C.; Ferreira, L.H.B.; Mascarenhas, L.P.G.; McAnulty, S.R.; Varela, K.D.; Dangui, M.C.; de Barros, M.P.; Utter, A.C.; Souza-Junior, T.P. The effects of strength training on cognitive performance in elderly women. Clin. Interv. Aging 2016, 11, 749–754. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Pan, C.-Y.; Chen, F.-T.; Tsai, C.-L.; Huang, C.-C. Effect of resistance-exercise training on cognitive function in healthy older adults: A review. J. Aging Phys. Act. 2012, 20, 497–517. [Google Scholar] [CrossRef]
- Huang, T.; Larsen, K.T.; Ried-Larsen, M.; Møller, N.C.; Andersen, L. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Helm, E.E.; Matt, K.S.; Kirschner, K.F.; Pohlig, R.T.; Kohl, D.; Reisman, D.S. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol. Learn. Mem. 2017, 144, 77–85. [Google Scholar] [CrossRef]
- Shibata, S.; Tahara, Y. Circadian rhythm and exercise. J. Phys. Fit. Sports Med. 2014, 3, 65–72. [Google Scholar] [CrossRef]
- Racinais, S.; Connes, P.; Bishop, D.; Blonc, S.; Hue, O. Morning versus evening power output and repeated-sprint ability. Chronobiol. Int. 2005, 22, 1029–1039. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Kraemer, W.J.; Bush, J.A.; Doughty, T.A.; Kim, D.; Mullen, K.M.; Ramsey, K. Biorhythmic influences on functional capacity of human muscle and physiological responses. Med. Sci. Sports Exerc. 1998, 30, 1399–1407. [Google Scholar] [CrossRef]
- Jasper, I.; Häußler, A.; Baur, B.; Marquardt, C.; Hermsdörfer, J. Circadian variations in the kinematics of handwriting and grip strength. Chronobiol. Int. 2009, 26, 576–594. [Google Scholar] [CrossRef]
- Wan, J.-J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Aquino, M.; Petrizzo, J.; Otto, R.M.; Wygand, J. The impact of fatigue on performance and biomechanical variables—A narrative review with prospective methodology. Biomechanics 2022, 2, 513–524. [Google Scholar] [CrossRef]
- Tanaka, M.; Ishii, A.; Watanabe, Y. Neural mechanism of central inhibition during physical fatigue: A magnetoencephalography study. Brain Res. 2013, 1537, 117–124. [Google Scholar] [CrossRef]
- Hammouda, O.; Chtourou, H.; Chahed, H.; Ferchichi, S.; Chaouachi, A.; Kallel, C.; Miled, A.; Chamari, K.; Souissi, N. High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int. J. Sports Med. 2012, 33, 886–891. [Google Scholar] [CrossRef]
Characteristics | 09:00 h (Morning) (N = 18) | 14:00 h (Afternoon) (N = 18) | 18:00 h (Evening) (N = 18) |
---|---|---|---|
Age (years) | 24.7 ± 4.5 | 24.7 ± 4.5 | 24.7 ± 4.5 |
Body mass (kg) | 65.4 ± 8.9 | 65.4 ± 8.9 | 65.4 ± 8.9 |
HR rest (bpm) | 68.3 ± 5.2 | 68.9 ± 7.5 | 67 ± 6.3 |
60% of HRmax (bpm) | 141.4 ± 4.5 | 141.7 ± 3.9 | 141.0 ± 3.5 |
84% of HRmax (bpm) | 170.7 ± 3.1 | 171.3 ± 3.5 | 170.6 ± 2.9 |
09:00 (Morning) | 14:00 (Afternoon) | 18:00 (Evening) | Fdf | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Fatigue | TofDay | Fatigue * TofDay | Fatigue | TofDay | Fatigue * TofDay | |
VisRT | 1.70 (0.23) | 1.62 (0.13) | 1.71 (0.24) | 1.60 (0.14) | 1.70 (0.26) | 1.57 (0.16) | F1.11 = 15.17 | F2.22 = 0.94 | F2.22 = 0.18 | p < 0.01 * | p > 0.05 | p > 0.05 |
VisM | 2.89 (1.81) | 3.17 (1.91) | 2.83 (1.50) | 2.89 (1.60) | 2.94 (2.18) | 3.33 (2.27) | F1.17 = 0.6 | F2.34 = 0.26 | F2.34 = 0.11 | p > 0.05 | p > 0.05 | p > 0.05 |
Parameter | 09:00 (Morning) | 14:00 (Afternoon) | 18:00 (Evening) | Fdf | p Value |
---|---|---|---|---|---|
Borg | 4.80 (1.20) | 5.20 (1.00) | 5.20 (1.60) | F2.34 = 0.67 | 0.519 |
RFD | 137.30 (76.70) | 161.20 (109.40) | 145.8 (112.40) | F2.32 = 0.34 | 0.713 |
DynaFdh | 0.86 (0.22) | 1.00 (0.21) | 0.99 (0.20) | F2.32 = 0.31 | 0.735 |
PT | 90.60 (28.10) | 96.10 (33.80) | 98.70 (31.80) | F2.30 = 4.62 | 0.018 * |
PTFI | 36.30 (6.90) | 40.70 (5.20) | 41.90 (5.10) | F2.26 = 6.17 | 0.006 * |
Parameter | VisRT2_9 | VisRT2_14 | VisRT2_18 | VisM2_9 | VisM2_14 | VisM2_18 | PT_9 | PT_14 | PT_18 | PTFI_9 | PTFI_14 | PTFI_18 | RFD_9 | RFD_14 | RFD_18 | DynaFdh_9 | DynaFdh__14 | DynaFdh_18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VisRT2_9 | 1 | 0.324 | 0.000 | 0,010 | 0.071 | 0.078 | 0.115 | 0.183 | 0.271 | −0.164 | 0.041 | 0.185 | −0.220 | −0.012 | −0.002 | 0.270 | 0.070 | −0.229 |
VisRT2_14 | 0.324 | 1 | 0.112 | −0.133 | 0.203 | 0.028 | 0.544 | 0.421 | 0.385 | 0.950 | 0,168 | 0.879 | 0.656 | 0.491 | 0.894 | 0.873 | 0.216 | 0.916 |
VisRT2_18 | 0.000 | 0.112 | 1 | 0.606 | 0.129 | 0.077 | 0.251 | 0.421 | 0.681 | 0.343 | 0.309 | 0.083 | 0.334 | 0.329 | −0.547 * | 0.986 | 0.193 | −0.581 ** |
VisM2_9 | 0.010 | −0.133 | 0.130 | 1 | 0.083 | 0.297 | 0.154 | 0.129 | 0.028 | 0.550 | 0.295 | −0.150 | −0.204 | 0.407 | 0.059 | −0.143 | 0.191 | −0.021 |
VisM2_14 | 0.071 | 0.203 | 0.372 | 0.083 | 1 | 0.446 | −0.176 | −0.205 | −0.141 | −0.090 | −0.286 | −0.192 | −0.369 | −0.156 | −0.341 | 0.045 | 0.364 | 0.454 |
VisM2_18 | 0.078 | 0.028 | 0.427 | 0.297 | 0.446 | 1 | 0.229 | 0.182 | 0.138 | 0.066 | −0.027 | −0.289 | −0.470 * | 0.058 | −0.199 | 0.183 | 0.074 | 0.318 |
PT_9 | 0.115 | −0.164 | 0.305 | 0.154 | −0.176 | 0.229 | 1 | 0.964 ** | 0.921 ** | −0.036 | −0.175 | −0.086 | 0.141 | 0.717 ** | 0.507 * | 0.322 | 0.047 | 0.170 |
PT_14 | 0.183 | −0.216 | 0.216 | 0.129 | −0.205 | 0.182 | 0.964 ** | 1 | 0.955 ** | −0.075 | −0.048 | −0.090 | 0.137 | 0.613 ** | 0.634 ** | 0.285 | 0.058 | 0.160 |
PT_18 | 0.271 | −0.233 | 0.112 | 0.028 | −0.141 | 0.138 | 0.921 ** | 0.955 ** | 1 | −0.114 | −0.116 | −0.007 | 0.290 | 0.520 * | 0.599 ** | 0.313 | 0.005 | 0.080 |
PTFI_9 | −0.164 | −0.018 | −0.274 | 0.550 * | −0.090 | 0.066 | −0.036 | −0.075 | −0.114 | 1 | 0.446 | 0.527 * | −0.004 | 0.206 | −0.090 | 0.213 | 0.014 | −0.010 |
PTFI_14 | 0.041 | −0.390 | −0.293 | −0.295 | −0.286 | −0.027 | −0.175 | −0.048 | −0.116 | 0.446 | 1 | 0.246 | 0.020 | −0.009 | 0.022 | 0.005 | 0.240 | −0.101 |
PTFI_18 | 0.185 | 0.045 | −0.475 | −0.150 | −0.192 | −0.289 | −0.086 | −0.090 | −0.007 | 0.527 * | 0.246 | 1 | −0.050 | −0.089 | −0.244 | 0.098 | −0.255 | −0.420 |
RFD_9 | −0.220 | −0.116 | −0.250 | −0.204 | −0.369 | −0.470 * | 0.141 | 0.137 | 0.290 | −0.004 | 0.020 | −0.050 | 1 | 0.207 | 0.324 | 0.068 | 0.005 | −0.149 |
RFD_14 | −0.012 | −0.179 | 0.252 | 0.407 | −0.156 | 0.058 | 0.717 ** | 0.613 ** | 0.520 * | 0.206 | −0.009 | −0.089 | 0.207 | 1 | 0.311 | 0.079 | 0.194 | 0.052 |
RFD_18 | −0.002 | −0.035 | −0.547 * | 0.059 | −0.341 | −0.199 | 0.507 * | 0.634 ** | 0.599 ** | −0.090 | 0.022 | −0.244 | 0.342 | 0.311 | 1 | 0.139 | 0.229 | 0.578 * |
DynaFdh_9 | −0.270 | −0.042 | 0.004 | −0.143 | 0.045 | 0.183 | 0.322 | 0.285 | 0.313 | 0.213 | 0.005 | 0.098 | 0.068 | 0.079 | 0.139 | 1 | 0.298 | 0.417 |
DynaFdh_14 | 0.070 | 0.316 | 0.332 | −0.191 | 0.364 | 0.074 | 0.047 | 0.058 | 0.005 | 0.014 | 0.240 | −0.255 | 0.005 | 0.194 | 0.229 | 0.298 | 1 | 0.731 ** |
DynaFdh_18 | −0.229 | 0.028 | −0.581 ** | −0.0021 | 0.454 | 0.0318 | 0.170 | 0.160 | 0.080 | −0.010 | −0.101 | −0.420 | −0.149 | 0.052 | 0.578 * | 0.417 | 0.731 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karanika, P.; Gallardo, P.; Tsatalas, T.; Giakas, G.; Tsaklis, P.V. Circadian Rhythm and Physical Fatigue Separately Influence Cognitive and Physical Performance in Amateur Athletes. J. Funct. Morphol. Kinesiol. 2024, 9, 227. https://doi.org/10.3390/jfmk9040227
Karanika P, Gallardo P, Tsatalas T, Giakas G, Tsaklis PV. Circadian Rhythm and Physical Fatigue Separately Influence Cognitive and Physical Performance in Amateur Athletes. Journal of Functional Morphology and Kinesiology. 2024; 9(4):227. https://doi.org/10.3390/jfmk9040227
Chicago/Turabian StyleKaranika, Panagiota, Philip Gallardo, Themistoklis Tsatalas, Giannis Giakas, and Panagiotis V. Tsaklis. 2024. "Circadian Rhythm and Physical Fatigue Separately Influence Cognitive and Physical Performance in Amateur Athletes" Journal of Functional Morphology and Kinesiology 9, no. 4: 227. https://doi.org/10.3390/jfmk9040227
APA StyleKaranika, P., Gallardo, P., Tsatalas, T., Giakas, G., & Tsaklis, P. V. (2024). Circadian Rhythm and Physical Fatigue Separately Influence Cognitive and Physical Performance in Amateur Athletes. Journal of Functional Morphology and Kinesiology, 9(4), 227. https://doi.org/10.3390/jfmk9040227