Review of Dynamic Building Envelope Systems and Technologies Utilizing Renewable Energy Resources
Abstract
:1. Introduction
2. Review Methodology
3. Results
3.1. Overview of Dynamic Building Envelopes
3.2. Renewable Energy Sources
3.3. Dynamic Envelopes
3.3.1. Kinetic Dynamic Envelopes
3.3.2. Passive Dynamic Envelopes
3.4. Method of Study
Site and Building Typology
3.5. Building Performance Metrics and Outcomes
3.5.1. Energy Performance
Net-Zero or Net-Positive Energy
3.5.2. Non-Energy Metrics
4. Discussion
4.1. Key Findings, Research Gaps, and Future Directions
4.2. Implications for Urban Sustainability
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
GHG | Greenhouse Gas |
PED | Positive Energy District |
RES | Renewable Energy Source |
DBE | Dynamic Building Envelope |
PV | Photovoltaic |
BIPV | Building Integrated Photovoltaics |
BIPV/T | Building-integrated Photovoltaic-thermal |
PCM | Phase-Change Material |
DREBE | Dynamic and Renewable Energy Building Envelope |
DSF | Double-skin façade |
dvPVBE | dynamic and vertical photovoltaic integrated building envelope |
PVSD | Photovoltaic shading device |
PVIMSD | Photovoltaic integrated moveable shading devices |
PVIO | Photovoltaic integrated overhangs |
AET | Adaptive envelope Technologies |
WTABS | Wind and Actuation Energy Harvesting Tensegrity Adaptive Building Screens |
PV/TW | Photovoltaic Trombe wall |
PVT | Photovoltaic-Thermal |
HEMS | Home energy management system |
EMS | Energy Management System |
DF | Daylight factor |
DGP | Daylight Glare Probability |
MOO | Multi-Objective Optimization |
SAM | System Advisor Model |
UHI | Urban Heat Island |
References
- Hannah Ritchie and Pablo Rosado. “Fossil Fuels” Published online at OurWorldinData.org. 2017. Available online: https://ourworldindata.org/fossil-fuels (accessed on 9 November 2024).
- Bosu, I.; Mahmoud, H.; Ookawara, S.; Hassan, H. Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: A comprehensive review. Solar Energy 2023, 259, 188–228. [Google Scholar] [CrossRef]
- IEA. Buildings—Energy System. Available online: www.iea.org/energy-system/buildings (accessed on 9 November 2024).
- Gupta, V.; Deb, C. Envelope design for low-energy buildings in the tropics: A review. Renew. Sustain. Energy Rev. 2023, 186, 113650. [Google Scholar]
- Resch, E.; Bohne, R.A.; Kvamsdal, T.; Lohne, J. Impact of urban density and building height on energy use in cities. Energy Procedia 2016, 96, 800–814. [Google Scholar]
- Derkenbaeva, E.; Vega, S.H.; Hofstede, G.J.; Van Leeuwen, E. Positive energy districts: Mainstreaming energy transition in urban areas. Renew. Sustain. Energy Rev. 2022, 153, 111782. [Google Scholar]
- Badarnah, L. Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation. Buildings 2017, 7, 40. [Google Scholar] [CrossRef]
- Wang, G.; Fang, J.; Yan, C.; Huang, D.; Hu, K.; Zhou, K. Advancements in smart building envelopes: A comprehensive review. Energy Build. 2024, 312, 114190. [Google Scholar] [CrossRef]
- Kunwar, N.; Cetin, K.S.; Passe, U. Dynamic shading in buildings: A review of testing methods and recent research findings. Curr. Sustain./Renew. Energy Rep. 2018, 5, 93–100. [Google Scholar]
- Boccalatte, A.; Fossa, M.; Ménézo, C. Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar façades. Renew. Energy 2020, 160, 686–697. [Google Scholar]
- D’Ambrosio, V.; Losasso, M.; Tersigni, E. Towards the energy transition of the building stock with BIPV: Innovations, gaps and potential steps for a widespread use of multifunctional PV components in the building envelope. Sustainability 2021, 13, 12609. [Google Scholar] [CrossRef]
- Rajoria, C.S.; Kumar, R.; Sharma, A.; Singh, D.; Suhag, S. Development of flat-plate building integrated photovoltaic/thermal (BIPV/T) system: A review. Mater. Today Proc. 2021, 46, 5342–5352. [Google Scholar]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K.; Alnaser, N.W.; Alnaser, W.E. Energy Enhancement of Building-Integrated Photovoltaic/Thermal Systems: A Systematic Review. Solar Compass 2024, 12, 100093. [Google Scholar]
- De Luca, F.; Voll, H.; Thalfeldt, M. Comparison of static and dynamic shading systems for office building energy consumption and cooling load assessment. Manag. Environ. Qual. Int. J. 2018, 29, 978–998. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadi, M.; Rosemann, A.; Schröder, T.; Lichtenberg, J. A morphological approach for kinetic façade design process to improve visual and thermal comfort. Build. Environ. 2019, 153, 186–204. [Google Scholar] [CrossRef]
- Shi, X.; Abel, T.; Wang, L. Influence of two motion types on solar transmittance and daylight performance of dynamic façades. Solar Energy 2020, 201, 561–580. [Google Scholar] [CrossRef]
- Wang, J.J.; Beltran, L. A method of energy simulation for dynamic building envelopes. Proc. SimBuild 2016, 6, 298–303. [Google Scholar]
- Goia, F.; Cascone, Y. The impact of an ideal dynamic building envelope on the energy performance of Low Energy Office Buildings. Energy Procedia 2014, 58, 185–192. [Google Scholar] [CrossRef]
- Reddy, V.J.; Ghazali, M.F.; Kumarasamy, S. Advancements in phase change materials for energy-efficient building construction: A comprehensive review. J. Energy Storage 2024, 81, 110494. [Google Scholar]
- Al-Yasiri, Q.; Szabó, M. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar]
- Wang, P.; Liu, Z.; Zhang, X.; Hu, M.; Zhang, L.; Fan, J. Adaptive dynamic building envelope integrated with phase change material to enhance the heat storage and release efficiency: A state-of-the-art review. Energy Build. 2023, 286, 112928. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Gupta, N.K.; Yadav, D.; Shukla, S.K.; Kaul, S. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review. Sustain. Cities Soc. 2022, 79, 103690. [Google Scholar] [CrossRef]
- Narbuts, J.; Vanaga, R. Revolutionizing the Building Envelope: A Comprehensive Scientific Review of Innovative Technologies for Reduced Emissions. Environ. Clim. Technol. 2023, 27, 724–737. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Shukla, S.K. A comprehensive review of the thermal performance in energy efficient building envelope incorporated with phase change materials. J. Energy Storage 2024, 79, 110128. [Google Scholar]
- Mohtashami, N.; Fuchs, N.; Fotopoulou, M.; Drosatos, P.; Streblow, R.; Osterhage, T.; Müller, D. State of the art of technologies in adaptive dynamic building envelopes (adbes). Energies 2022, 15, 829. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Bozlar, M.; Liu, Z.; Guo, H.; Meggers, F. Active building envelope systems toward renewable and Sustainable Energy. Renew. Sustain. Energy Rev. 2019, 104, 470–491. [Google Scholar] [CrossRef]
- Harry, S. Dynamic adaptive building envelopes—An innovative and state-of-the-art technology. Creat. Space 2016, 3, 167–184. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar]
- Zou, W.; Wang, Y.; Tian, E.; Wei, J.; Peng, J.; Mo, J. A new dynamic and vertical photovoltaic integrated building envelope for high-rise glaze-facade buildings. Engineering 2024, 39, 194–203. [Google Scholar]
- Oh, S.; Choi, G.S.; Kim, H. Climate-Adaptive Building Envelope Controls: Assessing the Impact on Building Performance. Sustainability 2023, 16, 288. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Athienitis, A.K.; Bagchi, A.; Abtahi, M. Integrated Dynamic Photovoltaic Facade for Enhanced Building Comfort and Energy Efficiency. Biomimetics 2024, 9, 463. [Google Scholar] [CrossRef]
- Cai, Y.; Huang, Y.; Shu, Z.; Liu, Z.; Zhong, H.; Zhao, F. Investigation of double-PCM based PV composite wall for power-generation and building insulation: Thermal characteristics and energy consumption prediction. Energy Built Environ. 2024; in press. [Google Scholar]
- Soliman, A.S.; Radwan, A.; Fouda, M.S.; Sultan, A.A.; Abdelrehim, O. Energy assessment of a sliding window integrated with PV cell and multiple PCMs. J. Energy Storage 2024, 86, 111341. [Google Scholar]
- Jiang, Y.; Qi, Z.; Ran, S.; Ma, Q. A study on the effect of dynamic photovoltaic shading devices on energy consumption and daylighting of an office building. Buildings 2024, 14, 596. [Google Scholar] [CrossRef]
- Dehwah, A.H.; Krarti, M. Energy performance of integrated adaptive envelope technologies for commercial buildings. J. Build. Eng. 2023, 63, 105535. [Google Scholar] [CrossRef]
- Biloria, N.; Makki, M.; Abdollahzadeh, N. Multi-performative façade systems: The case of real-time adaptive BIPV shading systems to enhance energy generation potential and visual comfort. Front. Built Environ. 2023, 9, 1119696. [Google Scholar] [CrossRef]
- Gholamian, E.; Barmas, R.B.; Zare, V.; Ranjbar, S.F. The effect of Incorporating phase change materials in building envelope on reducing the cost and size of the integrated hybrid-solar energy system: An application of 3E dynamic simulation with reliability consideration. Sustain. Energy Technol. Assess. 2022, 52, 102067. [Google Scholar]
- Rahimpour, Z.; Verbič, G.; Chapman, A.C. Can phase change materials in building insulation improve self-consumption of residential rooftop solar? An Australian case study. Renew. Energy 2022, 192, 24–34. [Google Scholar]
- Sun, X.; Lin, Y.; Zhu, Z.; Li, J. Optimized design of a distributed photovoltaic system in a building with phase change materials. Appl. Energy 2022, 306, 118010. [Google Scholar]
- Abdullah, A.A.; Atallah, F.S.; Ahmed, O.K.; Daoud, R.W. Performance improvement of photovoltaic/Trombe wall by using phase change material: Experimental assessment. J. Energy Storage 2022, 55, 105596. [Google Scholar]
- Krarti, M. Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings. Appl. Energy 2021, 293, 116942. [Google Scholar]
- Miranda, R.; Babilio, E.; Singh, N.; Santos, F.; Fraternali, F. Mechanics of smart origami sunscreens with energy harvesting ability. Mech. Res. Commun. 2020, 105, 103503. [Google Scholar] [CrossRef]
- Byon, Y.S.; Jeong, J.W. Annual energy harvesting performance of a phase change material-integrated thermoelectric power generation block in building walls. Energy Build. 2020, 228, 110470. [Google Scholar]
- Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shepherd, R.F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schlueter, A. Dynamic photovoltaic building envelopes for Adaptive Energy and Comfort Management. Nat. Energy 2019, 4, 671–682. [Google Scholar] [CrossRef]
- Ziasistani, N.; Fazelpour, F. Comparative study of DSF, PV-DSF and PV-DSF/PCM building energy performance considering multiple parameters. Solar Energy 2019, 187, 115–128. [Google Scholar] [CrossRef]
- Kant, K.; Pitchumani, R.; Shukla, A.; Sharma, A. Analysis and design of air ventilated building integrated photovoltaic (BIPV) system incorporating phase change materials. Energy Convers. Manag. 2019, 196, 149–164. [Google Scholar] [CrossRef]
- Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A. Optimising building net energy demand with dynamic BIPV shading. Appl. Energy 2017, 202, 726–735. [Google Scholar] [CrossRef]
- Elarga, H.; Dal Monte, A.; Andersen, R.K.; Benini, E. PV-PCM integration in glazed building. Co-simulation and genetic optimization study. Build. Environ. 2017, 126, 161–175. [Google Scholar] [CrossRef]
- Elarga, H.; Goia, F.; Zarrella, A.; Dal Monte, A.; Benini, E. Thermal and electrical performance of an integrated PV-PCM system in double skin façades: A numerical study. Solar Energy 2016, 136, 112–124. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- de Gracia, A. Dynamic building envelope with PCM for cooling purposes—Proof of concept. Appl. Energy 2019, 235, 1245–1253. [Google Scholar] [CrossRef]
- Dimitrijević-Jovanović, D.; Živković, P.; Stevanović, Ž. The impact of the building envelope with the green living systems on the built environment. Therm. Sci. 2018, 22 (Suppl. 4), 1033–1045. [Google Scholar]
- Lai, F.; Zhou, J.; Lu, L.; Hasanuzzaman, M.; Yuan, Y. Green building technologies in Southeast Asia: A review. Sustain. Energy Technol. Assess. 2023, 55, 102946. [Google Scholar]
- Chen, L.; Hu, Y.; Wang, R.; Li, X.; Chen, Z.; Hua, J.; Osman, A.I.; Farghali, M.; Huang, L.; Li, J.; et al. Green building practices to integrate renewable energy in the construction sector: A review. Environ. Chem. Lett. 2024, 22, 751–784. [Google Scholar]
- Zhang, X.; Lovati, M.; Vigna, I.; Widén, J.; Han, M.; Gal, C.; Feng, T. A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions. Appl. Energy 2018, 230, 1034–1056. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G.; Sayed, E.T.; Mahmoud, M.; Alami, A.H.; Abdelkareem, M.A. The state of renewable energy source envelopes in urban areas. Int. J. Thermofluids 2024, 21, 100581. [Google Scholar]
- Mohammed, M.A.; Budaiwi, I.M.; Al-Osta, M.A.; Abdou, A.A. Thermo-Environmental Performance of Modular Building Envelope Panel Technologies: A Focused Review. Buildings 2024, 14, 917. [Google Scholar] [CrossRef]
- Tabadkani, A.; Roetzel, A.; Li, H.X.; Tsangrassoulis, A. Design approaches and typologies of adaptive facades: A review. Autom. Constr. 2021, 121, 103450. [Google Scholar]
- Gondeck, M.; Triebel, M.A.; Steingrube, A.; Albert-Seifried, V.; Stryi-Hipp, G. Recommendations for a Positive Energy District Framework–Application and Evaluation of Different Energetic Assessment Methodologies. Smart Energy 2024, 15, 100147. [Google Scholar]
- Hassan, A.A.; El-Rayes, K. Optimizing the integration of renewable energy in existing buildings. Energy Build. 2021, 238, 110851. [Google Scholar] [CrossRef]
- De Freitas, J.; Cronemberger, J.; Soares, R.M.; Amorim, C.N. Modeling and assessing BIPV envelopes using parametric rhinoceros plugins grasshopper and ladybug. Renew. Energy 2020, 160, 1468–1479. [Google Scholar] [CrossRef]
- Bakker, L.G.; Hoes-van Oeffelen, E.C.M.; Loonen, R.C.G.M.; Hensen, J.L.M. User satisfaction and interaction with automated dynamic facades: A pilot study. Build. Environ. 2014, 78, 44–52. [Google Scholar] [CrossRef]
- Ntafalias, A.; Papadopoulos, P.; van Wees, M.; Šijačić, D.; Shafqat, O.; Hukkalainen, M.; Kantorovitch, J.; Lage, M. The Benefits of Positive Energy Districts: Introducing Additionality Assessment in Évora, Amsterdam and Espoo. Designs 2024, 8, 94. [Google Scholar] [CrossRef]
Reference | Envelope Type | Envelope Location | Renewable Energy Source | Objectives | Publication Date |
---|---|---|---|---|---|
[29] | Dynamic PV | Glazed façade | Solar | Energy saving, generation, and daylight | 2024 |
[30] | Dynamic PV | Glazed façade | Solar | Optimal geometry for energy saving and generation | 2024 |
[31] | Dynamic PV | Glazed façade | Solar | Energy generation and visual comfort | 2024 |
[32] | PCM | Wall | Solar | Improving thermal and electrical efficiency | 2024 |
[33] | Dynamic PV | Window | Solar | Enhance thermal and energy efficiencies | 2024 |
[34] | Dynamic PV | Window | Solar | Shade and energy generation | 2024 |
[35] | Dynamic PV | Window/Roof | Solar | Shade and energy generation | 2023 |
[36] | Dynamic PV | Glazed façade | Solar | Maximize irradiance on panels and minimize daylighting values | 2023 |
[37] | PCM | Wall | Solar | Reduce rooftop PV size | 2022 |
[38] | PCM | Wall | Solar | Electrical cost reductions in PV system | 2022 |
[39] | PCM | Wall | Solar | Thermal and electrical performance analysis | 2022 |
[40] | PCM | Trombe Wall | Solar | Thermal and electrical performance analysis | 2022 |
[41] | Dynamic PV | Window | Solar | Shade and energy generation | 2021 |
[42] | Dynamic sunscreen | Glazed façade | Piezoelectric | Shade and energy generation | 2020 |
[43] | PCM | Wall | Thermoelectric | Energy generation | 2020 |
[44] | Dynamic PV | Glazed façade | Solar | Shade and energy generation | 2019 |
[45] | PCM | DSF | Solar | Energy performance analysis | 2019 |
[46] | PCM | Wall | Solar | Enhance PV thermal performance | 2019 |
[47] | Dynamic PV | Glazed façade | Solar | Shade and energy generation | 2017 |
[48] | PCM | DSF | Solar | Energy and thermal pefromance analysis | 2017 |
[49] | PCM | DSF (on PV) | Solar | Energy and thermal pefromance analysis | 2016 |
Reference | Study Type | Building Type | Location | Season |
---|---|---|---|---|
[29] | Simulation | Commercial, Office | Beijing, China | Yearly |
[30] | Simulation | Commercial, Office | Houston, Texas, US | Summer |
[31] | Simulation | Commercial, Office | Montreal, Canada | NS |
[32] | Simulation | NS | Guangzhou, China | Yearly |
[33] | Both | NS | Egypt | Summer |
[34] | Simulation | NS | Qingdao, China | Yearly |
[35] | Simulation | Commercial, Office | Varies | NS |
[36] | Simulation | Educational | Sydney, Australia | Summer |
[37] | Simulation | Residential | Tabriz, Iran | Yearly |
[38] | Simulation | Residential | Australia, Varied cities | Yearly |
[39] | Both | Residential | Changsha, China | Summer and winter |
[40] | Experimentation | NS | Hawija, Iraq | Summer |
[41] | Simulation | Residential | US, varied cities | NS |
[42] | Simulation | Commercial, Office | Abu Dhabi | NS |
[43] | Experimentation | Commercial, Office | Seoul, South Korea | NS |
[44] | Both | Office, Residential | Zurich, Switzerland, other cities | Summer |
[45] | Simulation | Residential | Iran, six cities | Yearly |
[46] | Simulation | Commercial, Office | Arlington, Virginia, US | NS |
[47] | Simulation | Commercial, Office | Zurich, Switzerland | Summer |
[48] | Simulation | Commercial, Office | Venice, Italy | Summer and winter |
[49] | Simulation | Commercial, Office | Varies | NS |
Reference | Envelope Type | Envelope Location | Renewable Energy Source | Climate | Key Findings |
---|---|---|---|---|---|
[29] | Dynamic PV | Glazed façade | Solar | Monsoon-influenced Humid Continental | 131% of office annual energy demand met |
[30] | Dynamic PV | Glazed façade | Solar | Humid Subtropical | 2x times energy generation and up to 30% higher daylight performance |
[31] | Dynamic PV | Glazed façade | Solar | Warm-Summer Humid Continental | More than 50% reduction in lighting and cooling loads |
[32] | PCM | Wall | Solar | Humid Subtropical, monsoon-influenced | 7.94% reduced cooling loads |
[33] | Dynamic PV | Window | Solar | Hot Desert | Significant delay in peak temperature and heat flux |
[34] | Dynamic PV | Window | Solar | Monsoon-Influenced Humid Subtropical | Up to 50.38% energy consumption reduction |
[35] | Dynamic PV | Window/Roof | Solar | Varies | 47–109% energy savings reported for different cities |
[36] | Dynamic PV | Glazed façade | Solar | Humid Subtropical | 21.53% increase in energy generation |
[37] | PCM | Wall | Solar | Cold Semi-Arid | 27.4% heating and cooling load reduction |
[38] | PCM | Wall | Solar | Varies | 30% HVAC consumption reduction |
[39] | PCM | Wall | Solar | Humid Subtropical | Up to 47% peak cooling load reduction |
[40] | PCM | Trombe Wall | Solar | Hot Semi-Arid | Electrical and thermal efficiency increase of 4.8% and 0.3% |
[41] | Dynamic PV | Window | Solar | Varies | 40–105% energy savings for different US cities |
[42] | Dynamic sunscreen | Glazed façade | Piezoelectric | Hot Desert | 1000 WTABS provide comparable generation to 233 PV |
[43] | PCM | Wall | Thermoelectric | Monsoon-influenced Humid Continental | 2.1 kWh/m2 annual passive generation |
[44] | Dynamic PV | Glazed façade | Solar | Oceanic Climate, Varies | 45–88% reduction in energy consumption |
[45] | PCM | DSF | Solar | Varies | Cooling load reduction between 5 and 10% in different cities in Iran |
[46] | PCM | Wall | Solar | Humid Subtropical | Optimum BIPV design configurations |
[47] | Dynamic PV | Glazed façade | Solar | Oceanic Climate | 20–80% energy savings |
[48] | PCM | DSF | Solar | Humid Subtropical | 48% cooling load reduction |
[49] | PCM | DSF (on PV) | Solar | Varies | 20–30% cooling load reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almesbah, M.; Wang, J. Review of Dynamic Building Envelope Systems and Technologies Utilizing Renewable Energy Resources. Designs 2025, 9, 41. https://doi.org/10.3390/designs9020041
Almesbah M, Wang J. Review of Dynamic Building Envelope Systems and Technologies Utilizing Renewable Energy Resources. Designs. 2025; 9(2):41. https://doi.org/10.3390/designs9020041
Chicago/Turabian StyleAlmesbah, Mohammad, and Julian Wang. 2025. "Review of Dynamic Building Envelope Systems and Technologies Utilizing Renewable Energy Resources" Designs 9, no. 2: 41. https://doi.org/10.3390/designs9020041
APA StyleAlmesbah, M., & Wang, J. (2025). Review of Dynamic Building Envelope Systems and Technologies Utilizing Renewable Energy Resources. Designs, 9(2), 41. https://doi.org/10.3390/designs9020041