Flexible and Sustainable Incremental Houses: Advancing Semi-Volumetric Systems of Prefabricated Construction for Rapid Urbanization in Indonesia
Abstract
:1. Introduction
2. Literature Study
2.1. Typologies of Incremental House
2.2. Construction System Alternatives for Incremental Housing
2.2.1. On-Site Construction Method
2.2.2. Off-Site Construction Method
Construction Method | Adaptability | Availability | |
---|---|---|---|
Conventional on-site | Extensive demolition | Commonly used | [22] |
3D printing | Extensive demolition | Unavailable tools and materials | [12] |
Non-volumetric | Assembly, inefficient disassembly | Available, such as steel and timber | [25] |
Semi-volumetric | Assembly–disassembly | Available, such as steel, timber, composite panels | [35] |
Volumetric | Assembly, lacks the flexibility to custom | Available, such as composite panels | [13] |
2.3. Flexibility of Incremental House Construction with Prefabricated Construction System
3. Materials and Methods
3.1. Case Study
3.1.1. Incremental House Scenario
- Expansion mechanismBased on the housing standard in Indonesia [31], the residential area was determined through the fresh air needs of each individual. Presumably, 9 m2; therefore, the module space used in this study is 3 × 3 m. The expansion mechanism adopted module ¼—1 module for flexibility and material efficiency [46].
- Floor and land areaThe land area of 80 m2 obtained was based on the Minister of Settlement and Regional Infrastructure in Indonesia No. 403-2002 and is also regarded as the maximum area to be flexibly explored.
- Housing typeThe housing type scenario used is the landed house. This is because the incremental house tends to expand horizontally before expanding vertically [8].
- Expansion directionThe expansion direction was decided based on previous studies related to the incremental housing development pattern [7]. The following expansion scenarios were used, as shown in Figure 5.
- Stage 0 Horizontal—Core house
- Stage 1 Horizontal—Domestic needs (bedroom)
- Stage 2a Horizontal/Vertical—Domestic needs (bedroom)
- Stage 2b Horizontal/Vertical—Domestic needs (expansion of guest/family room)
- Stage 3a Vertical—Economic needs (working room/self-employment)
3.1.2. Construction System Alternative
- Construction method
- Assembly System
- Reversibility.
- Contact between components
- Connection Typology
3.2. Data Input and Output for Specifying Construction System
3.2.1. Structural Strength Simulation Displacement and Maximum Moment
3.2.2. Adaptability DFA Index and TC Value
3.3. Fabrication of Prototypes
3.4. Data Input and Output for Strength and Assembly–Disassembly Testing
3.4.1. Compressive Strength Test Settings
3.4.2. Construction Time Estimation Input
4. Results
4.1. Specified Alternative Construction System for Incremental House Scenario
4.1.1. Digital Simulation Displacement and Maximum Moment
4.1.2. DFA Index and TC Value
4.2. Assembly–Disassembly and Strength Testing Results
- -
- Plug-and-play connection system installation process(1) T-plug to truss assembly Fixing the top and lower T-plug to the truss with screws, (2) T-plug to socket assembly, Positioning the T-plug and truss components to be installed in the socket, including inserting a series of both components, (3) Plug-and-play connection complete Installing the T-plug and socket with bolts.
- -
- The process of installing the bracket connection system(1) Preparing two brackets Preparing the two bracket components joined with columns and beams, (2) Positioning brackets and bolts, Positioning the brackets side by side and the bolts for installation, (3) Tightening the bolts, tightening the bolts at the joints between the brackets and accessing it through the hole drilled in the plate.
4.2.1. Construction Time Estimation
4.2.2. Compressive Strength Test
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The World Bank. 2019. Available online: https://www.worldbank.org/in/news/press-release/2019/10/03/indonesia-bold-reforms-needed-to-realize-urban-potential (accessed on 22 February 2024).
- United States Green Building Council. Construction Waste; Materials and Resources; United States Green Building Council: Washington, DC, USA, 2013. [Google Scholar]
- Global Alliance for Building and Construction. Roadmap for an Energy Efficient, Low-Carbon Buildings and Construction Sector in Indonesia; Direktorat Jenderal Energi Baru, Terbarukan, dan Konservasi Energi: Jakarta, Indonesia, 2022. [Google Scholar]
- United Nations Environment Programme. The Closing Window, Climate Crisis Calls for Rapid Transformation of Societies; United Nations: Nairobi, Kenya, 2022. [Google Scholar]
- Alvarado, R.G.; Donath, D.; Böhme, L.F.G. Growth Patterns in Incremental Self-Build Housing in Chile. Open House Int. 2009, 34, 18–25. [Google Scholar] [CrossRef]
- Greene, M.; Rojas, E. Incremental Housing Construction: A Strategy to Facilitate Access to Housing. Environ. Urban. 2008, 20, 89–108. [Google Scholar] [CrossRef]
- Armenda, S.; Adianto, J.; Gabe, R.T. Growth Patterns and Pivotal Factors of Incremental Housing in Kampung Cikini, Jakarta. Int. J. Des. Manag. Prof. Pract. 2022, 16, 1. [Google Scholar] [CrossRef]
- Shabrina, T.; Adianto, J.; Gabe, R.T. Regressive Incremental Housing Development in Kampung Muka, North Jakarta. Int. J. Architecton. Spat. Environ. Des. 2021, 15, 81. [Google Scholar] [CrossRef]
- Wainer, L.S.; Ndengeyingoma, B.; Murray, S. Incremental Housing, and Other Design Principles for Low-Cost Housing; International Growth Centre: London, UK, 2016. [Google Scholar]
- Mselle, J.; Sanga, S.A. Constraint Facing Incremental Housing Construction in Dar es Salaam, Tanzania. J. Constr. Dev. Ctries. 2018, 23, 1–20. [Google Scholar] [CrossRef]
- Yates, J.K.; Castro-Lacouture, D. Sustainability in Engineering Design and Construction; CRC Press: New York, NY, USA, 2016. [Google Scholar]
- Riley, M.; Cotgrave, A. Construction Technology 1: House Construction, 3rd ed.; Palgrave Macmillan: London, UK, 2013. [Google Scholar]
- Adinda, N.R.; Dwipriyoko, E.; Kusuma, D.A.; Henong, S.B.; Nuryono, B.; Haris, S.; Mahardhika, A. Analysis of Modular House Fabrication Technology Application in Subsidized Housing Construction Based on Project Planning. In Journal of Physics: Conference Series; Virtual Conference on Engineering, Science and Technology (ViCEST); IOP Publishing: Bristol, UK, 2020; p. 1/012099. [Google Scholar]
- Zhong, B.; Guo, J.; Zhang, L.; Wu, H.; Li, H.; Wang, Y. A blockchain-based framework for on-site construction environmental monitoring: Proof of concept. Build. Environ. 2022, 217, 109064. [Google Scholar] [CrossRef]
- Gibb, A.; Isack, F. Re-engineering through pre-assembly: Client expectations and drivers. Build. Res. Indormation 2013, 31, 146–160. [Google Scholar] [CrossRef]
- Wibowo, A.H.; Larasati, D. Incremental Housing Development; An Approach In Meeting. Earth Environ. Sci. 2018, 152, 012006. [Google Scholar]
- Alananga, S.; Lucian, C.; Kusiluka, M.M. Significant cost-push factors in owner-built incremental housing construction in Tanzania. Constr. Manag. Econ. 2015, 33, 671–688. [Google Scholar] [CrossRef]
- Marinovic, G.I. The Guideline for Customizing Incremental Housing based on Two Chilean Case Studies. J. Archit. Urban. 2020, 4, 166–175. [Google Scholar] [CrossRef]
- Aravena, A. Elemental-Interview. Perspecta 2018, 42, 85–89. [Google Scholar]
- O’Brien, D.; Carrasco, S.; Dovey, K. Incremental housing: Harnessing informality at Villa Verde. J. Archit. Res. 2020, 14, 345–358. [Google Scholar] [CrossRef]
- Adhikari, S. Incremental Housing, Design Approach for Kathmandu; Metropolia University of Applied Science: Helsinki, Finland, 2019. [Google Scholar]
- Iqbal, M.N.; Ujianto, B.T. Prinsip desain arsitektur rumah tumbuh dan mikro: Studi karya arsitek yu sing. J. Perdaban Sains Rekayasa Teknol. 2021, 9, 234–249. [Google Scholar] [CrossRef]
- Setaki, F.; van Timmeren, A. Disruptive technologies for a circular building. Build. Environ. 2022, 223, 10394. [Google Scholar] [CrossRef]
- Wu, P. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Gunarto, G.T.; Kusuma, N.R.; Arvanda, E.; Isnaeni, H. An Analysis of Architectural Approach Towards the Efficiency of RISHA as Post-Disaster Housing Response in Indonesia. Earth Environ. Sci. 2020, 452, 012029. [Google Scholar] [CrossRef]
- Ziaesaeidi, P.; Farsangi, E.N. Fostering Social Sustainability: Inclusive Communities through Prefabricated Housing. Buildings 2024, 14, 1750. [Google Scholar] [CrossRef]
- Lopes, G.C.; Vicente, R.; Azenha, M.; Ferreira, T.M. A systematic review of Prefabricated Enclosure Wall Panel Systems: Focus on technology driven for performance requirements. Sustain. Cities Soc. 2018, 40, 688–703. [Google Scholar] [CrossRef]
- Rajanayagam, H.; Poologanathan, K.; Gatheeshgar, P.; Varelis, G.E.; Sherlock, P.; Nagaratnam, B.; Hackney, P. A-State-of-The-Art- Review on Modular Building Connections. Structures 2021, 34, 1903–1922. [Google Scholar] [CrossRef]
- Tavares, V.; Calheiros, C.S.C.; Martins, I.B.; Maia, J.; Tsikaloudaki, K.; Fonseca, M.; Marchesi, M.; Laban, M.; Soares, N.; Santos, P.; et al. Modularity and Prefabrication. [book auth.] Luis Braganca et.al. In Circular Economy Design and Management in the Built Environment; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Kepmen PUPR. Pedoman Teknis Pembangunan Rumah Sederhana Sehat (Rs SEHAT). No. 403/KTPS/M/2002. Jakarta, Indonesia, 2002. Available online: https://jdih.pu.go.id/internal/assets/assets/produk/KepmenPUPR/2002/12/Kepmen403-2002.pdf (accessed on 12 May 2024).
- Indonesian National Standard (SNI). 03-1977-1990 on the Specifications of Modular Coordination for Residential and Building Construction; Indonesian National Standard (SNI): Jakarta, Indonesia, 1990. [Google Scholar]
- Sunjata, V.; Simanjuntak, M.R.A.; Sulistio, H.; Ardani, J.A. The Implementation of Design for Manufacturing and Assembly (DfMA) in Indonesian Construction Industry: Major Barriers and Driving Factors. Plan. Malays. J. 2024, 22, 156–170. [Google Scholar] [CrossRef]
- Boafo, F.E.; Kim, J.H.; Kim, J.T. Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathway. Sustainability 2016, 8, 558. [Google Scholar] [CrossRef]
- da Silva, L.S.; Silva, L.C.; Tankova, T.; Craveiro, H.D.; Simões, R.; Costa, R.; D’Aniello, M.; Landolfo, R. Performance of modular hybrid cold-formed/tubular structural system. Structures 2021, 30, 1006–1019. [Google Scholar] [CrossRef]
- Smith, R.E. Prefab Architecture: A Guide to Modular Design and Construction; JohnWiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Till, J.; Tatjana, S. Flexible Housing: The Means to the End; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wilcox, A.; Mota, N.; Haffner, M.; Elsinga, M. Compact Housing for Incremental Growth: The K206 RDP Project in Alexandra, Johannesburg. Urban Plan. 2024, 9, 7736. [Google Scholar] [CrossRef]
- Durmisevic, E. Transformable Building Structures: Design for Disassembly as a Way to Introduce Sustainable Engineering to Building Design & Construction; Bouwkundig Ingenieur: Delft, The Netherland, 2006. [Google Scholar]
- Lin, Z.; Song, Y.; Han, D. Improvement of Airtightness for Lightweight Prefabricated Building Envelope through Optimized Design of Panel Joints. Mater. Sci. Eng. 2019, 556, 012063. [Google Scholar] [CrossRef]
- Boothroyd, G.; Dewhurst, P.; Knight, W.A. Product Design for Manufacture and Assembly, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Krikke, H.R.; Van Harten, A.; Schuur, P.C. On a medium term product recovery and disposal strategies for durable assembly products. Int. J. Prod. Res. 1998, 36, 111–140. [Google Scholar] [CrossRef]
- Rehal, A.; Sen, D. An Efficient Disassembly Sequencing Scheme Using the Shell Structure. Comput.-Aided Des. 2023, 154, 103423. [Google Scholar] [CrossRef]
- King, B. The New Carbon Architecture, Building to Cool The Climate; New Society Publishers: Gabriola, BC, Canada, 2017. [Google Scholar]
- Boza-kiss, B.; Moles-Grueso, S.; Urge-Vors, D. Evaluating policy instruments to foster energy efficiency for the sustainable transformation of buildings. Curr. Opin. Environ. Sustain. 2013, 5, 163–176. [Google Scholar] [CrossRef]
- Segui, W.T. Steel Design, 4th ed.; Thomson: Toronto, ON, Canada, 2007. [Google Scholar]
- Arisya, K.F.; Suryantini, R. Modularity in Design for Disassembly (DfD): Exploring the Strategy for a Better Sustainable Architecture. Earth Environ. Sci. 2021, 738, 012024. [Google Scholar] [CrossRef]
- Srisangeerthanan, S.; Hashemi, M.J.; Rajeev, P.; Gad, E.F.; Fernando, S. A Review on Diaphragm Behaviour and Connections for Multi-Story Modular Buildings. In Proceedings of the Australasian Structural Engineering Conference, Adelaide, Australia, 25–28 September 2018; pp. 1–8. [Google Scholar]
- Escaleira, C.; Amoeda, R.; Cruz, P.J. Connections and joints in buildings: Revisiting the main concepts on building materials’ life cycle’s circularity. Earth Environ. Sci. 2019, 225, 012062. [Google Scholar] [CrossRef]
- Indonesian National Standard (SNI). 1729–2020 on The Steel Structural Building Specification; Indonesian National Standard (SNI): Jakarta, Indonesia, 2020. [Google Scholar]
- Sears, S.K.; Sears, G.A.; Clough, R.H. Construction Project Management, A practical Guide to Field Construction Management, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Vladimirova, E.; Gong, M. Advancements and Applications of Wood-Based Sandwich Panels in Modern Construction. Buildings 2024, 14, 2359. [Google Scholar] [CrossRef]
- O’Brien, D.; Carrasco, S. Contested incrementalism: Elemental’s Quinta Monroy settlement fifteen years on. Front. Archit. Res. 2021, 10, 263–273. [Google Scholar] [CrossRef]
Connection Type | Component Name | Number of Components |
---|---|---|
Direct-interlock-tongue and groove (tongue and groove) | Column (groove) | 1 |
Beam (tongue) | 5 | |
Rivet | 10 | |
Column weight (kg) | 119.05 | |
Beam weight (kg) | 119.05 | |
Indirect-accessory-external-fin plate (fin plate) | Plate 3 mm | 8 |
Plate 6 mm | 2 | |
Screw 8 mm | 53 | |
Screw-fastening | 1 | |
Column | 1 | |
Beam | 1 | |
Column weight (kg) | 69.46 | |
Beam weight (kg) | 57.20 | |
Indirect-accessory-external-bracket (bracket) | Bracket | 8 |
Screw 12 mm | 32 | |
Screw fastening | 1 | |
Column | 1 | |
Beam | 1 | |
Column weight (kg) | 36.59 | |
Beam weight (kg) | 57.20 | |
Indirect-accessory-external-plug and play (plug and play) | T-plug | 1 |
Socket | 1 | |
Screw 12 mm | 15 | |
Screw 10 mm | 36 | |
Screw fastening | 1 | |
Column | 1 | |
Beam | 5 | |
Column weight (kg) | 36.60 | |
Beam weight (kg) | 4.54 |
Work Item | Volume Unit | Estimated Run Time (Hours per Volume) | |
---|---|---|---|
Conventional | Semi-Volumetric Prefabrication | ||
[13] | [12] | ||
Early work | m2 | 1.3 | 0.9 |
Structure and foundation | m3 | 20.0 | 14.0 |
Wall installation and painting | m2 | 8.0 | 5.6 |
Jamb work | m2 | 1.3 | 0.9 |
Floor | m2 | 2.7 | 1.9 |
Ceiling | m2 | 2.7 | 1.9 |
Roof truss and roof covering | m3 | 4.7 | 3.3 |
Plumbing | m3 | 2.0 | 1.4 |
Finishing | m2 | 4.7 | 3.3 |
Connection Type | Maximum Moment (kN/mm) |
---|---|
Int. Tongue and Groove | 421,035.6 |
Fin Plate | 154,697.7 |
Bracket | 290,427.7 |
Plug and Play | 814,001.4 |
Standard | 214,872.4 |
Connection Type | Total Grading | Average (TC Value) |
---|---|---|
Int. Tongue and Groove | 4.5 | 0.5625 |
Fin Plate | 6.5 | 0.8125 |
Bracket | 8 | 1 |
Plug and Play | 8 | 1 |
No. | Incremental House Construction Method | Work Item Duration Estimation (Week) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Schedule | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Convention incremental house construction | ||||||||||||||||
1 | Preliminary work/preparation | |||||||||||||||
2 | Foundation and main Structure | |||||||||||||||
3 | Wall and finishing | |||||||||||||||
4 | Doors and window frames | |||||||||||||||
5 | Flooring | |||||||||||||||
6 | Ceiling | |||||||||||||||
7 | Roof structure and finishing | |||||||||||||||
8 | Plumbing | |||||||||||||||
9 | Finishing | |||||||||||||||
10 | Exterior and cleaning | |||||||||||||||
Proposed (semi-volumetric prefabrication) incremental house construction | ||||||||||||||||
1 | Preliminary work/preparation | |||||||||||||||
2 | Foundation and main Strutucre | |||||||||||||||
3 | Wall and finishing | |||||||||||||||
4 | Doors and window frames | |||||||||||||||
5 | Flooring | |||||||||||||||
6 | Ceiling | |||||||||||||||
7 | Roof Structure and finishing | |||||||||||||||
8 | Plumbing | |||||||||||||||
9 | Finishing | |||||||||||||||
10 | Exterior and Cleaning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viriezky, V.; Susanto, D.; Alkadri, M.F. Flexible and Sustainable Incremental Houses: Advancing Semi-Volumetric Systems of Prefabricated Construction for Rapid Urbanization in Indonesia. Infrastructures 2025, 10, 5. https://doi.org/10.3390/infrastructures10010005
Viriezky V, Susanto D, Alkadri MF. Flexible and Sustainable Incremental Houses: Advancing Semi-Volumetric Systems of Prefabricated Construction for Rapid Urbanization in Indonesia. Infrastructures. 2025; 10(1):5. https://doi.org/10.3390/infrastructures10010005
Chicago/Turabian StyleViriezky, Viata, Dalhar Susanto, and Miktha Farid Alkadri. 2025. "Flexible and Sustainable Incremental Houses: Advancing Semi-Volumetric Systems of Prefabricated Construction for Rapid Urbanization in Indonesia" Infrastructures 10, no. 1: 5. https://doi.org/10.3390/infrastructures10010005
APA StyleViriezky, V., Susanto, D., & Alkadri, M. F. (2025). Flexible and Sustainable Incremental Houses: Advancing Semi-Volumetric Systems of Prefabricated Construction for Rapid Urbanization in Indonesia. Infrastructures, 10(1), 5. https://doi.org/10.3390/infrastructures10010005