Structure-to-Human Interaction (H2SI): Pedestrian Response to Oscillating Footbridges and Considerations on Their Structural Control and Health Monitoring
Abstract
:1. Introduction
2. Footbridge Vibrations, Regulations, and Impact on Walking Pedestrians
- The characterisation and modelling of pedestrian dynamic loads,
- The prediction of responses to various loading scenarios, and
- The establishment of comfort criteria for assessing and limiting vibrations.
3. Human Gait in Response to Bridge Vibrations
4. Pedestrian Responses to Vertical Bridge Vibrations
5. Pedestrian Responses to Horizontal Bridge Vibrations
6. Single-Human Modelling
6.1. Single-Human Vertical Vibration
6.2. Single-Human Lateral Vibration
7. Crowd Modelling
- The social forces models,
- The cellular automata models,
- The rule-based models,
- The agent-based models.
- -
- It allows for maintaining accuracy even at low traffic density.
- -
- It eliminates the velocity–density relationship for the crowd as it tends to move naturally.
- -
- It provides the ability to define individual parameters for each pedestrian.
- -
- Acceleration towards the desired velocity;
- -
- Repulsive terms to avoid collisions;
- -
- An attractive term towards other people or objects.
8. Structural Control and Health Monitoring Strategies for Vibration Mitigation
- Structural approaches include the following:
- -
- Increasing stiffness: Designing bridges with higher stiffness can raise their natural frequency [111], reducing the likelihood of resonance with pedestrian steps. This can be achieved by using materials with higher stiffness or incorporating design elements that enhance the overall rigidity of the structure. However, this is not always feasible, as stiffening the bridge could be economically or practically unfeasible or be deemed too impactful on its aesthetic and/or functionality.
- -
- Dampers: Installing dampers, such as viscous dampers or tuned mass dampers (TMDs), can effectively reduce the amplitude of vibrations. These devices absorb and dissipate energy, preventing the build-up of excessive oscillations. The use of tuned mass dampers, shown in Figure 10, was instrumental in mitigating vibrations on the Millennium Bridge, by making the bridge capable of dissipating more energy without the need for stiffening [112].
- Non-Structural approaches include the following:
- -
- Crowd management: Implementing crowd-control measures during peak usage times can help distribute pedestrian loads more evenly, reducing the likelihood of synchronisation and resonance effects. Techniques such as staggering pedestrian traffic and controlling the flow can significantly reduce vibration issues [113].
- -
- Public education: Educating the public about the effects of their walking patterns on bridge vibrations can help mitigate the impact, and informing pedestrians about the importance of avoiding synchronised walking can reduce the likelihood of accidentally inducing resonance or, at least, avoid panicking.
- -
- Real-time monitoring: Smart bridge technologies incorporating sensors and real-time monitoring systems can provide valuable data on human–structure interaction. These systems can detect unusual vibration patterns and trigger automated responses to mitigate risks, ensuring the safety and comfort of pedestrians [114].
9. Conclusions
- There is a greater number of studies dedicated to the investigation of vertical vibrations compared to lateral vibrations, despite the latter being critical in notable events like the Millennium Bridge incident.
- Most research isolates vertical and lateral vibrations, whereas a coupled approach would provide a more accurate understanding.
- Modelling predominantly emphasises single pedestrians, neglecting the complex dynamics of crowds and their collective behaviour under structural influence.
- The effects of the human-induced effects and dynamic loads on the structure’s vibrational behaviour are much more commonly addressed than the opposite—i.e., the effects of the structure dynamics on the single-human gait and the crowd behaviour.
- The guidelines currently adopted for the construction of footbridges neglect the aspect of pedestrian comfort and adopt overly simplistic criteria for human/crowd modelling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dallard, P.; Fitzpatrick, A.J.; Flint, A.; Bourva, S.; Low, A.; Smith, R.M.; Willford, M. The London Millennium Footbridge. Struct. Eng. 2001, 79, 17–33. [Google Scholar]
- Blekherman, A.N. Autoparametric Resonance in a Pedestrian Steel Arch Bridge: Solferino Bridge, Paris. J. Bridge Eng. 2007, 12, 669–676. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, J.; Caprani, C. Spectral Analysis of Human-Structure Interaction during Crowd Jumping. Appl. Math. Model. 2021, 89, 610–626. [Google Scholar] [CrossRef]
- Van Nimmen, K.; Pavic, A.; Van den Broeck, P. A Simplified Method to Account for Vertical Human-Structure Interaction. Structures 2021, 32, 2004–2019. [Google Scholar] [CrossRef]
- Ahmadi, E.; Caprani, C.; Živanović, S.; Heidarpour, A. Assessment of Human-Structure Interaction on a Lively Lightweight GFRP Footbridge. Eng. Struct. 2019, 199, 109687. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A.; Racic, V. Interaction between Walking Humans and Structures in Vertical Direction: A Literature Review. Shock Vib. 2016, 2016, 3430285. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A.; Racic, V. Structural Vibration Serviceability: New Design Framework Featuring Human-Structure Interaction. Eng. Struct. 2017, 136, 295–311. [Google Scholar] [CrossRef]
- Van Nimmen, K.; Lombaert, G.; De Roeck, G.; Van den Broeck, P. Vibration serviceability of footbridges: Evaluation of the current codes of practice. Eng. Struct. 2014, 59, 448–461. [Google Scholar] [CrossRef]
- Van Nimmen, K.; Lombaert, G.; De Roeck, G.; Van den Broeck, P. The Impact of Vertical Human-Structure Interaction on the Response of Footbridges to Pedestrian Excitation. J. Sound Vib. 2017, 402, 104–121. [Google Scholar] [CrossRef]
- Civera, M.; Rosso, M.M.; Marano, G.C.; Chiaia, B. Validation and Comparison of Two AOMA Approaches for the Ambient Vibration Testing of Long Suspension Bridges Under Strong Wind Loads. In International Operational Modal Analysis Conference; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 515, pp. 475–484. [Google Scholar] [CrossRef]
- Civera, M.; Sibille, L.; Zanotti Fragonara, L.; Ceravolo, R. A DBSCAN-Based Automated Operational Modal Analysis Algorithm for Bridge Monitoring. Measurement 2023, 208, 112451. [Google Scholar] [CrossRef]
- Martucci, D.; Civera, M.; Surace, C. Bridge Monitoring: Application of the Extreme Function Theory for Damage Detection on the I-40 Case Study. Eng. Struct. 2023, 279, 115573. [Google Scholar] [CrossRef]
- Casalegno, C.; Russo, S. Dynamic Characterization of an All-FRP Bridge. Mech. Compos. Mater. 2017, 53, 17–30. [Google Scholar] [CrossRef]
- Drygala, I.J.; Dulinska, J.M.; Ciura, R.; Lachawiec, K. Vibration Serviceability of Footbridges: Classical vs. Innovative Material Solutions for Deck Slabs. Materials 2020, 13, 3009. [Google Scholar] [CrossRef] [PubMed]
- Colmenares, D.; Costa, G.; Civera, M.; Surace, C.; Karoumi, R. Quantification of the Human–Structure Interaction Effect through Full-Scale Dynamic Testing: The Folke Bernadotte Bridge. Structures 2023, 55, 2249–2265. [Google Scholar] [CrossRef]
- Colmenares, D.; Andersson, A.; Karoumi, R. Closed-Form Solution for Mode Superposition Analysis of Continuous Beams on Flexible Supports under Moving Harmonic Loads. J. Sound Vib. 2022, 520, 116587. [Google Scholar] [CrossRef]
- Quqa, S.; Giordano, P.F.; Limongelli, M.P. Shared Micromobility-Driven Modal Identification of Urban Bridges. Autom. Constr. 2022, 134, 104048. [Google Scholar] [CrossRef]
- Dallard, P.; Fitzpatrick, T.; Flint, A.; Low, A.; Smith, R.R.; Willford, M.; Roche, M. London millennium bridge: Pedestrian-induced lateral vibration. J. Bridge Eng. 2001, 6, 412–417. [Google Scholar] [CrossRef]
- Ingólfsson, E.T.; Georgakis, C.T.; Jönsson, J. Pedestrian-induced lateral vibrations of footbridges: A literature review. Eng. Struct. 2012, 45, 21–52. [Google Scholar] [CrossRef]
- Brownjohn, J.; Fok, P.; Roche, M.; Omenzetter, P. Long Span Steel Pedestrian Bridge at Singapore Changi Airport—Part 1: Prediction of Vibration Serviceability Problems; The Structural Engineer: Singapore, 2004. [Google Scholar]
- Caetano, E.; Cunha, Á.; Magalhães, F.; Moutinho, C. Studies for Controlling Human-Induced Vibration of the Pedro e Inês Footbridge, Portugal. Part 1: Assessment of Dynamic Behaviour. Eng. Struct. 2010, 32, 1069–1081. [Google Scholar] [CrossRef]
- Caetano, E.; Cunha, Á.; Moutinho, C.; Magalhães, F. Studies for Controlling Human-Induced Vibration of the Pedro e Inês Footbridge, Portugal. Part 2: Implementation of Tuned Mass Dampers. Eng. Struct. 2010, 32, 1082–1091. [Google Scholar] [CrossRef]
- Fujino, Y.; Pacheco, B.M.; Nakamura, S.-I.; Warnitchai, P. Synchronization of Human Walking Observed during Lateral Vibration of a Congested Pedestrian Bridge. Earthq. Eng. Struct. Dyn. 1993, 22, 741–758. [Google Scholar] [CrossRef]
- Nakamura, S.-I. Field Measurements of Lateral Vibration on a Pedestrian Suspension Bridge. Struct. Eng. 2003, 81, 22–26. [Google Scholar]
- Hoorpah, W.; Flamand, O.; Cespedes, X. The Simone de Beauvoir Footbridge between Bercy Quay and Tolbiac Quay in Paris: Study and Measurement of the Dynamic Behaviour of the Structure under Pedestrian Loads and Discussion of Corrective Modifi Cations. In Footbridge Vibration Design; CRC Press: Boca Raton, FL, USA, 2009; pp. 111–124. [Google Scholar] [CrossRef]
- Macdonald, J.H.G. Pedestrian-Induced Vibrations of the Clifton Suspension Bridge, UK. Proc. Inst. Civ. Eng.-Bridge Eng. 2008, 161, 69–77. [Google Scholar] [CrossRef]
- Danion, F.; Varraine, E.; Bonnard, M.; Pailhous, J. Stride Variability in Human Gait: The Effect of Stride Frequency and Stride Length. Gait Posture 2003, 18, 69–77. [Google Scholar] [CrossRef]
- Nilsson, J.; Thorstensson, A. Adaptability in Frequency and Amplitude of Leg Movements during Human Locomotion at Different Speeds. Acta Physiol. Scand. 1987, 129, 107–114. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, T.J.; Mundinger, E.M.; Kuo, A.D. A Biomechanics Dataset of Healthy Human Walking at Various Speeds, Step Lengths and Step Widths. Sci. Data 2022, 9, 704. [Google Scholar] [CrossRef]
- Bachmann, H.; Ammann, W.J.; Delschl, F.; Eisenmann, J.; Floegl, I.; Hirsch, G.H.; Klein, G.K.; Lande, G.J.; Mahrenholtz, O.; Natke, H.G.; et al. Vibration Problems in Structures Pratical Guidelines; Birkhauser Verlag: Zurich, Switzerland, 1995. [Google Scholar]
- Živanović, S.; Pavic, A.; Reynolds, P. Vibration Serviceability of Footbridges under Human-Induced Excitation: A Literature Review. J. Sound Vib. 2005, 279, 1–74. [Google Scholar] [CrossRef]
- Forner Cordero, A. Human Gait, Stumble and…Fall? Mechanical Limitations of the Recovery from a Stumble; University of Twente: Enshede, The Netherlands, 2003. [Google Scholar]
- McRobie, A.; Morgenthal, G.; Lasenby, J.; Ringer, M. Section Model Tests on Human—Structure Lock-In. Proc. Inst. Civ. Eng.-Bridge Eng. 2003, 156, 71–79. [Google Scholar] [CrossRef]
- Newland, D.E. Pedestrian Excitation of Bridges. J. Mech. Eng. Sci. 2004, 2018, 477–492. [Google Scholar] [CrossRef]
- Racic, V.; Pavic, A.; Brownjohn, J.M.W. Experimental identification and analytical modelling of human walking forces: Literature review. J. Sound Vib. 2009, 326, 1–49. [Google Scholar] [CrossRef]
- Wang, H. Structural Vibration Serviceability and Human Comfort; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2023; ISBN 978-3-0365-8706-6. [Google Scholar]
- Ma, R.; Ke, L.; Wang, D.; Chen, A.; Pan, Z. Experimental Study on Pedestrians’ Perception of Human-Induced Vibrations of Footbridges. Int. J. Struct. Stab. Dyn. 2018, 18, 1850116. [Google Scholar] [CrossRef]
- Archbold, P.J. Novel Interactive Load Models for Pedestrian Footbridges; Faculty of Engineering and Architecture, National University of Ireland, University College Dublin: Dublin, Ireland, 2004. [Google Scholar]
- Butz, C.; Caetano, E.; Chabrolin, B.; Cunha, A.; Goldack, A.; Keil, A.; Lemaire, A.; Lukić, M.; Martin, P.-O.; Schlaich, M.; et al. Design of Lightweight Footbridges for Human Induced Vibrations; Publications Office of the European Union: Luxembourg, 2009; Volume 82. [Google Scholar] [CrossRef]
- Blanchard, J.; Davies, B.L.; Smith, J.W. Design Criteria and Analysis for Dynamic Loading of Test Bridges. Proceedings of a Symposium on Dynamic Behaviour of Bridges; Transport and Road Research Laboratory (TRRL): Crowthorne, UK, 1977. [Google Scholar]
- Leonard, D. Human Tolerance Limits for Bridge Vibrations. Transport and Road Research Laboratory Supplementary Report 34; Road Research Laboratory: Wokingham, UK, 1966. [Google Scholar]
- Smith, J. The Vibration of Highway Bridges and the Effects on Human Comfort; The University of Bristol: Bristol, UK, 1969. [Google Scholar]
- Fanning, P.J.; Healy, P.; Pavic, A. Pedestrian Bridge Vibraiton Serviceability—A Case Study in Testing and Simulation. Adv. Struct. Eng. 2010, 13, 861–873. [Google Scholar] [CrossRef]
- Venuti, F.; Racic, V.; Corbetta, A. Modelling Framework for Dynamic Interaction between Multiple Pedestrians and Vertical Vibrations of Footbridges. J. Sound Vib. 2016, 379, 245–263. [Google Scholar] [CrossRef]
- Živanović, S. Benchmark Footbridge for Vibration Serviceability Assessment under the Vertical Component of Pedestrian Load. J. Struct. Eng. 2012, 138, 1193–1202. [Google Scholar] [CrossRef]
- Macdonald, J.H.G. Lateral Excitation of Bridges by Balancing Pedestrians. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 1055–1073. [Google Scholar] [CrossRef]
- Brady, R.A.; Peters, B.T.; Bloomberg, J.J. Strategies of Healthy Adults Walking on a Laterally Oscillating Treadmill. Gait Posture 2009, 29, 645–649. [Google Scholar] [CrossRef]
- Stokes, H.E.; Thompson, J.D.; Franz, J.R. The Neuromuscular Origins of Kinematic Variability during Perturbed Walking. Sci. Rep. 2017, 7, 808. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, L.I.; Whipple, R.; Amerman, P.; Kaplan, J.; Kleinberg, A. Gait and Balance in the Elderly: Two Functional Capacities That Link Sensory and Motor Ability to Falls. Clin. Geriatr. Med. 1985, 1, 649–659. [Google Scholar] [CrossRef]
- Bocian, M.; Brownjohn, J.M.W.; Racic, V.; Hester, D.; Quattrone, A.; Monnickendam, R. A Framework for Experimental Determination of Localised Vertical Pedestrian Forces on Full-Scale Structures Using Wireless Attitude and Heading Reference Systems. J. Sound Vib. 2016, 376, 217–243. [Google Scholar] [CrossRef]
- Harle, R. A Survey of Indoor Inertial Positioning Systems for Pedestrians. IEEE Commun. Surv. Tutor. 2013, 15, 1281–1293. [Google Scholar] [CrossRef]
- Aux, J.D.; Castillo, B.; Marulanda, J.; Thomson, P. Modelling Human-Structure Interaction in Pedestrian Bridges Using a Three-Dimensional Biomechanical Approach. Appl. Sci. 2024, 14, 7257. [Google Scholar] [CrossRef]
- Guignard, J.C. Human Sensitivity to Vibration. J. Sound Vib. 1971, 15, 11–16. [Google Scholar] [CrossRef]
- Thuong, O.; Griffin, M.J. The Vibration Discomfort of Standing People: Evaluation of Multi-Axis Vibration. Ergonomics 2015, 58, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Castillo, B.; Marulanda, J.; Thomson, P. Innovative Experimental Assessment of Human–Structure Interaction Effects on Footbridges with Accurate Multi-Axial Dynamic Sensitivity Using Real-Time Hybrid Simulation. Appl. Sci. 2024, 14, 8908. [Google Scholar] [CrossRef]
- Griffin, M.L. Handbook of Human Vibration; Academic Press: Southampton, UK; Human Factors Research Unit, Institute of Sound and Vibration Research, The University: Southampton, UK, 1990. [Google Scholar]
- Matsumoto, Y.; Griffin, M.J. Dynamic Response of the Standing Human Body Exposed to Vertical Vibration: Influence of Posture and Vibration Magnitude. J. Sound Vib. 1998, 212, 85–107. [Google Scholar] [CrossRef]
- Kiiski, J.; Heinonen, A.; Järvinen, T.L.; Kannus, P.; Sievänen, H. Transmission of Vertical Whole Body Vibration to the Human Body. J. Bone Miner. Res. 2008, 23, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Pollock, R.D.; Woledge, R.C.; Mills, K.R.; Martin, F.C.; Newham, D.J. Muscle Activity and Acceleration during Whole Body Vibration: Effect of Frequency and Amplitude. Clin. Biomech. 2010, 25, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Gheitasi, A.; Ozbulut, O.E.; Usmani, S.; Alipour, M.; Harris, D.K. Experimental and Analytical Vibration Serviceability Assessment of an In-Service Footbridge. Case Stud. Nondestruct. Test. Eval. 2016, 6, 79–88. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, P. Subjective Discomfort Caused by Vertical Whole-Body Vibration in the Frequency Range 2–100 Hz. Ergonomics 2019, 62, 420–430. [Google Scholar] [CrossRef]
- Castillo, B.; Marulanda, J.; Thomson, P. Experimental Evaluation of Pedestrian-Induced Multiaxial Gait Loads on Footbridges: Effects of the Structure-to-Human Interaction by Lateral Vibrating Platforms. Sensors 2024, 24, 2517. [Google Scholar] [CrossRef]
- Baker, W.D.R.; Mansfield, N.J. Effects of Horizontal Whole-Body Vibration and Standing Posture on Activity Interference. Ergonomics 2010, 53, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, R.G.; Jiménez-Alonso, J.F.; Martínez, F.; Díaz, I.M. Uncertainty-Based Approaches for the Lateral Vibration Serviceability Assessment of Slender Footbridges. Structures 2021, 33, 3475–3485. [Google Scholar] [CrossRef]
- Dang, H.V.; Živanović, S. Experimental Characterisation of Walking Locomotion on Rigid Level Surfaces Using Motion Capture System. Eng. Struct. 2015, 91, 141–154. [Google Scholar] [CrossRef]
- ISO 18649:2004; Mechanical Vibration-Evaluation of Measurement Results from Dynamic Tests and Investigations on Bridges Vibrations Mécaniques-Évaluation Des Résultats de Mesures Relatives Aux Essais Dynamiques et Aux Investigations Sur Les, Ponts. Technical Committee ISO/TC 108, Mechanical Vibration and Shock; ISO: Geneve, Switzerland, 2004.
- Butz, C.; Heinemeyer, C.; Keil, A.; Schlaich, M.; Goldack, A.; Trometer, S.; Lukić, M.; Chabrolin, B.; Lemaire, A.; Martin, P.-O.; et al. Design of Footbridges Guideline (RFS2-CT-2007-00033). 2008. Available online: https://www.stahlbau.stb.rwth-aachen.de/projekte/2007/HIVOSS/docs/Footbridge_Guidelines_EN03.pdf (accessed on 1 December 2024).
- Caprani, C.C.; Ahmadi, E. Formulation of Human–Structure Interaction System Models for Vertical Vibration. J. Sound Vib. 2016, 377, 346–367. [Google Scholar] [CrossRef]
- EN 1995-2; Eurocode 5: Design of Timber Structures—Part 2: Bridges. European Committee for Standardization: Brussels, Belgium, 2004.
- British Standards Institution. Steel, Concrete and Composite Bridges. Code of Practice for Design of Steel Bridges; British Standards Institution: London, UK, 2000; ISBN 0580330648. [Google Scholar]
- Technical Committee CEN/TC 250. EN 1991-2 Eurocode 1: Actions on Structures—Part 2: Traffic Loads on Bridges; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- Biggs, J.M. Introduction to Structural Dynamics; McGraw-Hill College: New York, NY, USA, 1964. [Google Scholar]
- O’Sullivan, D.; Caprani, C.; Keogh, J. The Response of a Footbridge to Pedestrians Carrying Additional Mass. In Proceedings of the BCRI (Bridge and Concrete Research Ireland) Conference, Dublin, Ireland, 6–7 September 2012. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A.; Racic, V. Identification of Mass-Spring-Damper Model of Walking Humans. Structures 2016, 5, 233–246. [Google Scholar] [CrossRef]
- da Silva, F.T.; Brito, H.M.B.F.; Pimentel, R.L. Modeling of Crowd Load in Vertical Direction Using Biodynamic Model for Pedestrians Crossing Footbridges. Can. J. Civ. Eng. 2013, 40, 1196–1204. [Google Scholar] [CrossRef]
- de Roeck, G. EURODYN 2011: 8th International Conference on Structural Dynamics: Leuven, Belgium, 4–6 July 2011; Katholieke Universiteit Leuven; European Association of Structural Dynamics: Leuven, Belgium, 2011; ISBN 9789076019314. [Google Scholar]
- Brownjohn, J.M.W.; Pavic, A.; Omenzetter, P. A Spectral Density Approach for Modelling Continuous Vertical Forces on Pedestrian Structures Due to Walking. Can. J. Civ. Eng. 2004, 31, 65–77. [Google Scholar] [CrossRef]
- De Roeck, G.; Katholieke Universiteit Leuven. EURODYN (8 2011.07.04-06 Leuven); International Conference on Structural Dynamics (8 2011.07.04-06 Leuven). In Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, 4–6 July 2011; ISBN 9789076019314. [Google Scholar]
- Belykh, I.; Jeter, R.; Belykh, V. Foot Force Models of Crowd Dynamics on a Wobbly Bridge. Sci. Adv. 2017, 3, e1701512. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Qiu, S.; Wang, Z.; Yang, N.; Xu, J. Pedestrian Dead Reckoning Using Pocket-Worn Smartphone. IEEE Access 2019, 7, 91063–91073. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W. A Bipedal Walking Model Considering Trunk Pitch Angle for Estimating the Influence of Suspension Load on Human Biomechanics. IEEE Trans. Biomed. Eng. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.W.; Law, S.S.; Yang, Q.S.; Yang, N. Pedestrian-Bridge Dynamic Interaction, Including Human Participation. J. Sound Vib. 2013, 332, 1107–1124. [Google Scholar] [CrossRef]
- Geyer, H.; Seyfarth, A.; Blickhan, R. Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running. Proc. R. Soc. B Biol. Sci. 2006, 273, 2861–2867. [Google Scholar] [CrossRef] [PubMed]
- Aux, J.D.; Castillo, B.; Riascos, C.; Marulanda, J.; Thomson, P. Evaluation of Vertical Human-Structure Interaction on a Pedestrian Bridge Using a Predictive Human Gait Model. Struct. Control. Health Monit. 2024, 1, 8880701. [Google Scholar] [CrossRef]
- Kim, S.-H.; Cho, K.-I.; Choi, M.-S.; Lim, J.-Y. Development of Human Body Model for the Dynamic Analysis of Footbridges under Pedestrian Induced Excitation. Steel Struct. 2008, 8, 333–345. [Google Scholar]
- Ricciardelli, F.; Asce, M.; Pizzimenti, A.D. Lateral Walking-Induced Forces on Footbridges. J. Bridge Eng. 2007, 12, 677–688. [Google Scholar] [CrossRef]
- Han, H.; Zhou, D.; Ji, T.; Zhang, J. Modelling of Lateral Forces Generated by Pedestrians Walking across Footbridges. Appl. Math. Model. 2021, 89, 1775–1791. [Google Scholar] [CrossRef]
- Strogatz, S.H.; Abrams, D.M.; McRobie, A.; Eckhardt, B.; Ott, E. Theoretical Mechanics: Crowd Synchrony on the Millennium Bridge. Nature 2005, 438, 43–44. [Google Scholar] [CrossRef]
- Xie, W.; Hua, Y. Structural Vibration Comfort: A Review of Recent Developments. Buildings 2024, 14, 1592. [Google Scholar] [CrossRef]
- Beltaief, O.; El Hadouaj, S.; Ghedira, K. Multi-Agent Simulation Model of Pedestrians Crowd Based on Psychological Theories. In Proceedings of the 2011 4th International Conference on Logistics, Hammamet, Tunisia, 31 May–3 June 2011. [Google Scholar]
- Challenger, R. Emergency Planning College Understanding Crowd Behaviours: Guidance and Lessons Identified; University of Leeds: Leeds, UK, 2009; ISBN 9781874321200. [Google Scholar]
- Alsaleh, R.; Sayed, T. Markov-Game Modeling of Cyclist-Pedestrian Interactions in Shared Spaces: A Multi-Agent Adversarial Inverse Reinforcement Learning Approach. Transp. Res. Part C Emerg. Technol. 2021, 128, 103191. [Google Scholar] [CrossRef]
- Smirnov, E.; Dunaenko, S.; Kudinov, S. Using Multi-Agent Simulation to Predict Natural Crossing Points for Pedestrians and Choose Locations for Mid-Block Crosswalks. Geo-Spat. Inf. Sci. 2020, 23, 362–374. [Google Scholar] [CrossRef]
- Kimura, T.; Sano, T.; Hayashida, K.; Takeichi, N.; Minegishi, Y.; Yoshida, Y.; Watanabe, H. Representation of Crowd in Multi-Agent Model. J. Archit. Plan. 2009, 74, 371–377. [Google Scholar] [CrossRef]
- Belykh, I.; Bocian, M.; Champneys, A.R.; Daley, K.; Jeter, R.; Macdonald, J.H.G.; McRobie, A. Emergence of the London Millennium Bridge Instability without Synchronisation. Nat. Commun. 2021, 12, 7223. [Google Scholar] [CrossRef] [PubMed]
- Venuti, F.; Bruno, L.; Bellomo, N. Crowd Dynamics on a Moving Platform: Mathematical Modelling and Application to Lively Footbridges. Math. Comput. Model. 2007, 45, 252–269. [Google Scholar] [CrossRef]
- Carroll, S.P.; Owen, J.S.; Hussein, M.F.M. A Coupled Biomechanical/Discrete Element Crowd Model of Crowd-Bridge Dynamic Interaction and Application to the Clifton Suspension Bridge. Eng. Struct. 2013, 49, 58–75. [Google Scholar] [CrossRef]
- Helbing, D.; Molnar, P. Social Force Model for Pedestrian Dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alonso, J.F.; Sáez, A. Recent Advances in the Serviceability Assessment of Footbridges Under Pedestrian-Induced Vibrations. Bridge Eng. 2018, 61. [Google Scholar] [CrossRef]
- Carroll, S.P.; Owen, J.S.; Hussein, M.F.M. Modelling Crowd-Bridge Dynamic Interaction with a Discretely Defined Crowd. J. Sound Vib. 2012, 331, 2685–2709. [Google Scholar] [CrossRef]
- Venuti, F.; Tubino, F. Human-Induced Loading and Dynamic Response of Footbridges in the Vertical Direction Due to Restricted Pedestrian Traffic. Struct. Infrastruct. Eng. 2021, 17, 1431–1445. [Google Scholar] [CrossRef]
- Fruin, J.J. Designing for Pedestrians: A Level-of-Service Concept; The Port of New York Authority: New York, NY, USA, 1970.
- Weidmann, U. Transporttechnik Der Fussgänger Transporttechnische Eigenschaften Des Fussgängerverkehrs, Literaturauswertung. IVT Schriftenreihe 1993, 90. [Google Scholar] [CrossRef]
- Tanaboriboon, Y.; Siang Hwa, S.; Chor, C.H. Pedestrian Characteristics Study in Singapore. J. Transp. Eng. 1986, 112, 229–235. [Google Scholar] [CrossRef]
- Virkler, M.R.; Elayadath, S. Research Issues on Bicycling, Pedestrians, and Older Drivers, Transportation Research Record No. 1438; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Li, Q.; Fan, J.; Nie, J.; Li, Q.; Chen, Y. Crowd-Induced Random Vibration of Footbridge and Vibration Control Using Multiple Tuned Mass Dampers. J. Sound Vib. 2010, 329, 4068–4092. [Google Scholar] [CrossRef]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.H.; Moutinho, C.; Caetano, E.; Magalhes, F.; Cunha, L. Continuous Dynamic Monitoring of a Lively Footbridge for Serviceability Assessment and Damage Detection. Mech. Syst. Signal Process. 2012, 33, 38–55. [Google Scholar] [CrossRef]
- Moser, P.; Moaveni, B. Environmental Effects on the Identified Natural Frequencies of the Dowling Hall Footbridge. Mech. Syst. Signal Process. 2011, 25, 2336–2357. [Google Scholar] [CrossRef]
- Van Nimmen, K.; Van Hauwermeiren, J.; Van den Broeck, P. Eeklo Footbridge: Benchmark Dataset on Pedestrian-Induced Vibrations. J. Bridge Eng. 2021, 26. [Google Scholar] [CrossRef]
- Steinman, D.B. Modes and Natural Frequencies of Suspension Bridge Oscillations. J. Frankl. Inst. 1959, 268, 148–174. [Google Scholar] [CrossRef]
- Pavic, A.; Willford, M.; Reynolds, P.; Wright, J. Key Results of Modal Testing of The Millennium Bridge, London. Proc. Footbridge 2002, 2002, 1–10. [Google Scholar]
- Pavia, A.; Zivanovic, S. Probabilistic Assessment of Human Response to Footbridge Vibration. J. Low. Freq. Noise Vib. Act. Control 2009, 28, 255–268. [Google Scholar] [CrossRef]
- Saeed, M.U.; Sun, Z.; Elias, S. Research Developments in Adaptive Intelligent Vibration Control of Smart Civil Structures. J. Low. Freq. Noise Vib. Act. Control 2022, 41, 292–329. [Google Scholar] [CrossRef]
- Preumont, A.; Voltan, M.; Sangiovanni, A.; Bastaits, R.; Mokrani, B.; Alaluf, D. An Investigation of the Active Damping of Suspension Bridges. Math. Mech. Complex. Syst. 2015, 3, 385–406. [Google Scholar] [CrossRef]
- Casado, C.M.; Díaz, I.M.; de Sebastián, J.; Poncela, A.V.; Lorenzana, A. Implementation of Passive and Active Vibration Control on an In-Service Footbridge. Struct. Control Health Monit. 2013, 20, 70–87. [Google Scholar] [CrossRef]
- Moutinho, C.; Cunha, Á.; Caetano, E.; de Carvalho, J.M. Vibration Control of a Slender Footbridge Using Passive and Semiactive Tuned Mass Dampers. Struct. Control Health Monit. 2018, 25, e2208. [Google Scholar] [CrossRef]
- Occhiuzzi, A.; Spizzuoco, M.; Serino, G. Semi-Active MR Dampers in TMD’s for Vibration Control of Footbridges, Part 1: Numerical Modeling and Control Algorithm. In Proceedings of the Conference Footbridge 2002, Paris, France, 20–22 November 2002. [Google Scholar]
- Seiler, G.; Fischer, O.; Huber, P. Semi-Active MR Dampers in TMD’s for Vibration Control of Footbridges, Part 2: Numerical Analysis and Practical Realisation. In Proceedings of the Conference Footbridge 2002, Paris, France, 20–22 November 2002. [Google Scholar]
- Weber, F.; Maślanka, M. Frequency and Damping Adaptation of a TMD with Controlled MR Damper. Smart Mater. Struct. 2012, 21, 055011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caloni, A.; Morfino, M.; Civera, M.; Surace, C. Structure-to-Human Interaction (H2SI): Pedestrian Response to Oscillating Footbridges and Considerations on Their Structural Control and Health Monitoring. Infrastructures 2025, 10, 9. https://doi.org/10.3390/infrastructures10010009
Caloni A, Morfino M, Civera M, Surace C. Structure-to-Human Interaction (H2SI): Pedestrian Response to Oscillating Footbridges and Considerations on Their Structural Control and Health Monitoring. Infrastructures. 2025; 10(1):9. https://doi.org/10.3390/infrastructures10010009
Chicago/Turabian StyleCaloni, Aurora, Matteo Morfino, Marco Civera, and Cecilia Surace. 2025. "Structure-to-Human Interaction (H2SI): Pedestrian Response to Oscillating Footbridges and Considerations on Their Structural Control and Health Monitoring" Infrastructures 10, no. 1: 9. https://doi.org/10.3390/infrastructures10010009
APA StyleCaloni, A., Morfino, M., Civera, M., & Surace, C. (2025). Structure-to-Human Interaction (H2SI): Pedestrian Response to Oscillating Footbridges and Considerations on Their Structural Control and Health Monitoring. Infrastructures, 10(1), 9. https://doi.org/10.3390/infrastructures10010009