Optimal Temperature-Based Condition Monitoring System for Wind Turbines
Abstract
:1. Introduction
- Introducing an optimal risked-based methodology for WT condition monitoring;
- Proposing an artificial neural network-based model for estimating the normal condition of WT key components;
- Presenting a real-time risk indicator, which is used in the health monitoring and anomaly detection of WT.
2. Condition-Based Maintenance of WT
3. Optimal Temperature-Based Condition Monitoring Framework
4. Mathematical Modeling
4.1. Modeling of Normal Conditions
- Collecting the measured data from WT and analyzing their cross-dependency;
- Defining a set of failure modes based on the collected data;
- Formulating the normal condition model based on the normal operation condition of the system (excluding the failure periods);
- Validating the proposed model in a test (or study) period.
4.2. Modeling of Risk Indicator
4.3. Modeling of Safe Band Optimization
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | artificial neural network |
CBM | condition-based maintenance |
Conv | converter |
CPU | central processing unit |
IDE | integrated development environment |
Gear | gearbox |
Gen | generator |
MAE | mean absolute error |
MLP | multi-layer Perceptron |
RAM | random-access memory |
RUL | remaining useful life |
SCADA | supervisory control and data acquisition |
Trans | transformer |
WT | wind turbine |
References
- Bosch, J.; Staffell, I.; Hawkes, A.D. Global levelised cost of electricity from offshore wind. Energy 2019, 189, 116357. [Google Scholar] [CrossRef]
- Babazadeh, D.; Van Hertem, D.; Nordström, L. Study of centralized and distributed coordination of power injection in multi-TSO HVDC grid with large off-shore wind integration. Electr. Power Syst. Res. 2016, 136, 281–288. [Google Scholar] [CrossRef]
- Board, R.A. Value Breakdown for the Offshore Wind Sector; Technical Report for the Renewables Advisory Board (RAB) by BVG Associates; RAB, 2010; pp. 1–20. Available online: https://assets.publishing.service.gov.uk.glasswall-icap.com/government/uploads/system/uploads/attachment_data/file/48171/2806-value-breakdown-offshore-wind-sector.pdf (accessed on 16 March 2021).
- Chandrasekhar, K. Gaussian processes for structural health monitoring of wind turbine blades. Renew. Sustain. Energy Rev. 2019, 64, 91–105. [Google Scholar]
- Teimourzadeh Baboli, P. Flexible and overall reliability analysis of hybrid AC–DC microgrid among various distributed energy resource expansion scenarios. IET Gener. Transm. Distrib. 2016, 10, 3978–3984. [Google Scholar] [CrossRef]
- Parsa Moghaddam, M.; Teimourzadeh Baboli, P.; Alishahi, E.; Lotfifard, F. Flexible load following the wind power generation. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010; pp. 802–807. [Google Scholar]
- Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F. Wind Turbine Drivetrain Condition Monitoring during GRC Phase 1 and Phase 2 Testing; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011.
- Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [Google Scholar] [CrossRef]
- Han, Q.; Chu, F. Condition Monitoring of Wind Turbines Using Adaptive Control Charts. In Proceedings of the 13th International Conference on Damage Assessment of Structures; Springer: Berlin/Heidelberg, Germany, 2020; pp. 606–617. [Google Scholar]
- Zhang, P.; Lu, D. A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines. Energies 2019, 12, 2801. [Google Scholar]
- Xu, Q.; Fan, Z.; Jia, W.; Jiang, C. Quantile regression neural network-based fault detection scheme for wind turbines with application to monitoring a bearing. Wind Energy 2019, 22, 1390–1401. [Google Scholar] [CrossRef]
- Fava, G.M.; Liberatore, S.; Moaveni, B. Estimating Fatigue in the Main Bearings of Wind Turbines Using Experimental Data. In Dynamics of Civil Structures; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 163–171. [Google Scholar]
- Solimine, J.; Niezrecki, C.; Inalpolat, M. An experimental investigation into passive acoustic damage detection for structural health monitoring of wind turbine blades. Struct. Health Monit. 2020, 19, 1711–1725. [Google Scholar] [CrossRef]
- Teimourzadeh Baboli, P.; Damavandi, M.Y.; Parsa Moghaddam, M.; Haghifam, M. A mixed integer modeling of micro energy-hub system. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Zhang, F.; Wen, Z.; Liu, D.; Jiao, J.; Wan, H.; Zeng, B. Calculation and Analysis of Wind Turbine Health Monitoring Indicators Based on the Relationships with SCADA Data. Appl. Sci. 2020, 10, 410. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Hong, R.; Chen, J.; Wu, W. A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox. Renew. Energy 2020, 152, 138–154. [Google Scholar] [CrossRef]
- Teimourzadeh Baboli, P.; Parsa Moghaddam, M. Allocation of network-driven load-management measures using multiattribute decision-making. IEEE Trans. Power Deliv. 2010, 25, 1839–1845. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep Learning Method for Fault Detection of Wind Turbine Converter. Appl. Sci. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Milić, S.D.; Ilić, D.; Ponjavić, M. Fault detection using FRA in order to improve the aging model of power transformer. Facta Univ. Ser. Electron. Energetics 2020, 33, 413–427. [Google Scholar] [CrossRef]
- Astolfi, D.; Castellani, F.; Natili, F. Wind turbine generator slip ring damage detection through temperature data analysis. Diagnostyka 2019, 20, 3–9. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Gong, Y.; Yang, Z.G. Failure analysis on over-temperature combustion of transformers in 4 MW offshore wind turbines. Eng. Fail. Anal. 2019, 96, 211–222. [Google Scholar] [CrossRef]
- Uzunoğlu, B. An Adaptive Bayesian Approach with Subjective Logic Reliability Networks for Preventive Maintenance. IEEE Trans. Reliab. 2019, 916–924. [Google Scholar] [CrossRef]
- Artigao, E.; Martín-Martínez, S.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Appl. Energy 2018, 228, 1569–1583. [Google Scholar] [CrossRef]
- Leite, G.d.N.P.; Araújo, A.M.; Rosas, P.A.C. Prognostic techniques applied to maintenance of wind turbines: A concise and specific review. Renew. Sustain. Energy Rev. 2018, 81, 1917–1925. [Google Scholar] [CrossRef]
- Zhou, P.; Yin, P. An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics. Renew. Sustain. Energy Rev. 2019, 109, 1–9. [Google Scholar] [CrossRef]
- Babazadeh, D.; Muthukrishnan, A.; Mitra, P.; Larsson, T.; Nordström, L. Real-time estimation of AC-grid short circuit capacity for HVDC control application. IET Gener. Transm. Distrib. 2017, 11, 838–846. [Google Scholar] [CrossRef]
- Ghamlouch, H.; Fouladirad, M.; Grall, A. The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties. Reliab. Eng. Syst. Saf. 2019, 188, 614–623. [Google Scholar] [CrossRef]
- Song, S.; Li, Q.; Felder, F.A.; Wang, H.; Coit, D.W. Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance. Comput. Ind. Eng. 2018, 120, 288–297. [Google Scholar] [CrossRef]
- Tziavos, N.I.; Hemida, H.; Dirar, S.; Papaelias, M.; Metje, N.; Baniotopoulos, C. Structural health monitoring of grouted connections for offshore wind turbines by means of acoustic emission: An experimental study. Renew. Energy 2020, 147, 130–140. [Google Scholar] [CrossRef]
- Traylor, C.; DiPaola, M.; Willis, D.J.; Inalpolat, M. A computational investigation of airfoil aeroacoustics for structural health monitoring of wind turbine blades. Wind Energy 2020, 23, 795–809. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teimourzadeh Baboli, P.; Babazadeh, D.; Raeiszadeh, A.; Horodyvskyy, S.; Koprek, I. Optimal Temperature-Based Condition Monitoring System for Wind Turbines. Infrastructures 2021, 6, 50. https://doi.org/10.3390/infrastructures6040050
Teimourzadeh Baboli P, Babazadeh D, Raeiszadeh A, Horodyvskyy S, Koprek I. Optimal Temperature-Based Condition Monitoring System for Wind Turbines. Infrastructures. 2021; 6(4):50. https://doi.org/10.3390/infrastructures6040050
Chicago/Turabian StyleTeimourzadeh Baboli, Payam, Davood Babazadeh, Amin Raeiszadeh, Susanne Horodyvskyy, and Isabel Koprek. 2021. "Optimal Temperature-Based Condition Monitoring System for Wind Turbines" Infrastructures 6, no. 4: 50. https://doi.org/10.3390/infrastructures6040050
APA StyleTeimourzadeh Baboli, P., Babazadeh, D., Raeiszadeh, A., Horodyvskyy, S., & Koprek, I. (2021). Optimal Temperature-Based Condition Monitoring System for Wind Turbines. Infrastructures, 6(4), 50. https://doi.org/10.3390/infrastructures6040050