Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Diagnosis
3.1.1. Urban Drainage—Diagnosis
3.1.2. Impacts Generated by Floods on Other Systems
- Housing
- Sewage System
- Mobility
- Community Facilities
- Economy
- Cultural Heritage
3.1.3. Comprehensive Flood Resilience Assessment
3.1.4. Diagnosis Discussion
3.2. Urban Drainage Design Supported by the Open Spaces System
3.2.1. Urban Drainage—Design
3.2.2. Design Impact on Other City Systems
3.2.3. Comprehensive Flood Resilience Assessment
3.2.4. Design Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Perceived species-richness in urban green spaces: Cues, accuracy and well-being impacts. Landsc. Urban Plan. 2018, 172, 1–10. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Natural Disasters. Available online: https://ourworldindata.org/natural-disasters (accessed on 14 April 2021).
- Miguez, M.G.; Veról, A.P.; da Rêgo, A.Q.S.F.; Lourenço, I.B. Urban Agglomeration and Supporting Capacity: The Role of Open Spaces within Urban Drainage Systems as a Structuring Condition for Urban Growth. In Urban Agglomeration; InTech: London, UK, 2018. [Google Scholar]
- Barbedo, J.; Miguez, M.; van der Horst, D.; Marins, M. Enhancing ecosystem services for flood mitigation: A conservation strategy for peri-urban landscapes? Ecol. Soc. 2014, 19, 11. [Google Scholar] [CrossRef]
- Toledo-Gallegos, V.M.; My, N.H.; Tuan, T.H.; Börger, T. Valuing ecosystem services and disservices of blue/green infrastructure. Evidence from a choice experiment in Vietnam. Econ. Anal. Policy 2022, 75, 114–128. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- Miguez, M.G.; Veról, A.P.; Battemarco, B.P.; Yamamoto, L.M.T.; Brito, F.A.; Fernandez, F.F.; Merlo, M.L.; Rego, A.Q. A framework to support the urbanization process on lowland coastal areas: Exploring the case of Vargem Grande—Rio de Janeiro, Brazil. J. Clean. Prod. 2019, 231, 1281–1293. [Google Scholar] [CrossRef]
- Gharib, Z.; Yazdani, M.; Bozorgi-Amiri, A.; Tavakkoli-Moghaddam, R.; Taghipourian, M.J. Developing an integrated model for planning the delivery of construction materials to post-disaster reconstruction projects. J. Comput. Des. Eng. 2022, 9, 1135–1156. [Google Scholar] [CrossRef]
- Esmaiel, A.; Abdrabo, K.I.; Saber, M.; Sliuzas, R.V.; Atun, F.; Kantoush, S.A.; Sumi, T. Integration of flood risk assessment and spatial planning for disaster management in Egypt. Prog. Disaster Sci. 2022, 15, 100245. [Google Scholar] [CrossRef]
- Auliagisni, W.; Wilkinson, S.; Elkharboutly, M. Using community-based flood maps to explain flood hazards in Northland, New Zealand. Prog. Disaster Sci. 2022, 14, 100229. [Google Scholar] [CrossRef]
- Rezende, O.M.; Ribeiro da Cruz de Franco, A.B.; Beleño de Oliveira, A.K.; Miranda, F.M.; Pitzer Jacob, A.C.; Martins de Sousa, M.; Miguez, M.G. Mapping the flood risk to Socioeconomic Recovery Capacity through a multicriteria index. J. Clean. Prod. 2020, 255, 120251. [Google Scholar] [CrossRef]
- Dewan, A. Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability, 1st ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Uddin, K.; Matin, M.A. Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology. Prog. Disaster Sci. 2021, 11, 100185. [Google Scholar] [CrossRef]
- CRED; UNISDR. Economic Losses, Poverty & Disasters–1998–2017; UNISDR: Geneva, Switzerland, 2017; p. 33. [Google Scholar]
- Urrutia, J.M.; Scheffczyk, K.; Riembauer, G.; Mendoza, J.; Yanez, D.; Jímenez, S.; Ramírez, A.; Acosta, M.; Argüello, J.; Huerta, B.; et al. A validated geospatial model approach for monitoring progress of the Sendai Framework: The example of people affected in agriculture due to flooding in Ecuador. Prog. Disaster Sci. 2022, 15, 100233. [Google Scholar] [CrossRef]
- Chandrasena, D.C.N.; Yusof, K.B.W.; Liyanapathirana, V.C.; Mustafa, M.R.U.; Mustaffa, Z. Blocked Drains Syndrome: Physical Degradation of the Storm Drainage System in a Compact City. Adv. Sci. Lett. 2017, 23, 1407–1411. [Google Scholar] [CrossRef]
- Silveira, A.L.L. Problems of modern urban drainage in developing countries. Water Sci. Technol. 2002, 45, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Veról, A.P.; Battemarco, B.P.; Merlo, M.L.; Machado, A.C.M.; Haddad, A.N.; Miguez, M.G. The urban river restoration index (URRIX)-A supportive tool to assess fluvial environment improvement in urban flood control projects. J. Clean. Prod. 2019, 239, 118058. [Google Scholar] [CrossRef]
- Haddad, E.A.; Teixeira, E. Economic impacts of natural disasters in megacities: The case of floods in São Paulo, Brazil. Habitat Int. 2015, 45, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.C.M.; Veról, A.P.; Battemarco, B.P.; Miguez, M.G. Proposal of a complementary tool to assess environmental river quality: The River Classification Index (RCI). J. Clean. Prod. 2020, 254, 120000. [Google Scholar] [CrossRef]
- Capps, K.A.; Bentsen, C.N.; Ramírez, A. Poverty, urbanization, and environmental degradation: Urban streams in the developing world. Freshw. Sci. 2016, 35, 429–435. [Google Scholar] [CrossRef]
- Secron, M.B.; Montaño, M.; Miguez, M.G.; Jonoski, A.; de Azevedo, J.P.S.; Popescu, I.; Rosman, P.C.C. Proposal of a hydric index to support industrial site location decision-making applying a fuzzy multi-attribute methodology. Ecol. Indic. 2017, 83, 427–440. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Sevigné-Itoiz, E.; Rojas-Gutierrez, L.A.; Barbassa, A.P.; Josa, A.; Rieradevall, J.; Gabarrell, X. Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater Best Management Practices. J. Clean. Prod. 2017, 162, 601–608. [Google Scholar] [CrossRef]
- Low, K.S.; Balamurungan, G. Urbanization and Urban Water Problems in Southeast Asia a Case of Unsustainable Development Low Kwai Sire and G. Balamurugan Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia. J. Environ. Manag. 1991, 32, 195–209. [Google Scholar]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dueñas-Osorio, L.; Vemuru, S.M. Cascading failures in complex infrastructure systems. Struct. Saf. 2009, 31, 157–167. [Google Scholar] [CrossRef]
- Gibson, M.J.; Chen, A.S.; Khoury, M.; Vamvakeridou-Lyroudia, L.S.; Stewart, D.; Wood, M.; Savić, D.A.; Djordjević, S. Case study of the cascading effects on critical infrastructure in Torbay coastal/pluvial flooding with climate change and 3D visualisation. J. Hydroinformatics 2020, 22, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.F.; Leandro, J. A Conceptual time-varying flood resilience index for urban areas: Munich city. Water 2019, 11, 830. [Google Scholar] [CrossRef] [Green Version]
- Sathurshan, M.; Saja, A.; Thamboo, J.; Haraguchi, M.; Navaratnam, S. Resilience of Critical Infrastructure Systems: A Systematic Literature Review of Measurement Frameworks. Infrastructures 2022, 7, 67. [Google Scholar] [CrossRef]
- Almaleh, A.; Tipper, D. Risk-based criticality assessment for smart critical infrastructures. Infrastructures 2022, 7, 3. [Google Scholar] [CrossRef]
- De Bruijn, K.M.; Maran, C.; Zygnerski, M.; Jurado, J.; Burzel, A.; Jeuken, C.; Obeysekera, J. Flood resilience of critical infrastructure: Approach and method applied to Fort Lauderdale, Florida. Water 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Ha, H.; Bui, Q.D.; Nguyen, H.D.; Pham, B.T.; Lai, T.D.; Luu, C. A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam. Environ. Dev. Sustain. 2022, 1, 1–30. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Wang, H.; Zhou, R.; Wu, W.; Wang, Y. Spatial distribution patterns and potential exposure risks of urban floods in Chinese megacities. J. Hydrol. 2022, 610, 127838. [Google Scholar] [CrossRef]
- Battemarco, B.P.; Tardin-Coelho, R.; Veról, A.P.; de Sousa, M.M.; da Fontoura, C.V.T.; Figueiredo-Cunha, J.; Barbedo, J.M.R.; Miguez, M.G. Water dynamics and blue-green infrastructure (BGI): Towards risk management and strategic spatial planning guidelines. J. Clean. Prod. 2022, 333, 129993. [Google Scholar] [CrossRef]
- Tubridy, F.; Lennon, M.; Scott, M. Managed retreat and coastal climate change adaptation: The environmental justice implications and value of a coproduction approach. Land Use Policy 2022, 114, 105960. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E. Open space protection and flood mitigation: A national study. Land Use Policy 2013, 32, 89–95. [Google Scholar] [CrossRef]
- McPhearson, T.; Cook, E.M.; Berbés-Blázquez, M.; Cheng, C.; Grimm, N.B.; Andersson, E.; Barbosa, O.; Chandler, D.G.; Chang, H.; Chester, M.V.; et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 2022, 5, 505–518. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Paolinelli, G.; Cei, M.; Cristiani, N.; Marinaro, L.; Veronesi, F. Don’t Split Them Up! Landscape Design of Multifunctional Open Spaces Suitable for Coping with Flash Floods and River Floods. Sustainability 2022, 14, 2316. [Google Scholar] [CrossRef]
- Lourenço, I.B.; Guimarães, L.F.; Alves, M.B.; Miguez, M.G. Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. J. Clean. Prod. 2020, 276, 123096. [Google Scholar] [CrossRef]
- Da Silva, J.M.C.; Wheeler, E. Ecosystems as infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) Network: Toward Water-Sensitive Urban Growth Planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Thorne, C.R.; Lawson, E.C.; Ozawa, C.; Hamlin, S.L.; Smith, L.A. Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure for urban flood risk management. J. Flood Risk Manag. 2018, 11, S960–S972. [Google Scholar] [CrossRef]
- O’Donnell, E.; Thorne, C.; Ahilan, S.; Arthur, S.; Birkinshaw, S.; Butler, D.; Dawson, D.; Everett, G.; Fenner, R.; Glenis, V.; et al. The blue-green path to urban flood resilience. Blue Green Syst. 2020, 2, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Filazzola, A.; Shrestha, N.; MacIvor, J.S. The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta-analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- Bacchin, T.K.; Ashley, R.; Sijmons, D.; Zevenbergen, C.; van Timmeren, A. Green-blue multifunctional infrastructure: An urban landscape system design new approach. In Proceedings of the 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7–12 September 2014; Volume 4, pp. 1–8. [Google Scholar]
- Gehrels, H.; van der Meulen, S.; Schasfoort, F.; Bosch, P.; Brolsma, R.; van Dinther, D.; Geerling, G.; Goossens, M.; Jacobs, C.; de Jong, M.; et al. Designing Green and Blue Infrastructure to Support Healthy Urban Living; Wageningen University & Research: Wageningen, The Netherlands, 2016; p. 111. [Google Scholar]
- Kazmierczak, A.; Carter, J. Adaptation to Climate Change Using Green and Blue Infrastructure A Database of Case Studies; Wageningen University & Research: Wageningen, The Netherlands, 2010; p. 182. [Google Scholar]
- Almaaitah, T.; Appleby, M.; Rosenblat, H.; Drake, J.; Joksimovic, D. The potential of Blue-Green infrastructure as a climate change adaptation strategy: A systematic literature review. Blue Green Syst. 2021, 3, 223–248. [Google Scholar] [CrossRef]
- Guimarães, L.F.; Miguez, M.G. A New Approach to Assess Cascading Effects of Urban Floods: The Social Impact. In Proceedings of the 2nd LA SDEWES Conference, SDEWES Centre, Buenos Aires, Argentina, 9–12 February 2020; pp. 1–11. [Google Scholar]
- Miguez, M.G.; Battemarco, B.P.; de Sousa, M.M.; Rezende, O.M.; Veról, A.P.; Gusmaroli, G. Urban flood simulation using MODCEL-an alternative quasi-2D conceptual model. Water 2017, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Miguez, M.G.; Radesca, F.D.; Veról, A.P.; Sousa, M.M.; Oliveira, L.F.G.S. Multilayer Modelling as a Supporting Tool for Flood Diagnosis and Drainage System Design. In New Trends in Urban Drainage Modelling. UDM 2018. Green Energy and Technology; Mannina, G., Ed.; Springer: Cham, Switzerland, 2018; pp. 490–495. [Google Scholar]
- Beleño de Oliveira, A.K.; Rezende, O.M.; Martins de Sousa, M.; Nardini, A.; Miguez, M.G. An alternative flood model calibration strategy for urban watersheds: The case study of Riohacha, Colombia. Water Sci. Technol. 2019, 79, 2095–2105. [Google Scholar] [CrossRef]
- IRM. Instituto Rio Metrópole. Strategic Plan for Integrated Urban Development for the Metropolitan Region of Rio de Janeiro. In Portuguese: Plano Estratégico de Desenvolvimento Urbano Integrado da Região Metropolitana do Rio de Janeiro (PEDUI/RMRJ) . 2017. Available online: https://www.modelarametropole.com.br/ (accessed on 6 May 2019).
- Dubé, J.; AbdelHalim, M.; Devaux, N. Evaluating the impact of floods on housing price using a spatial matching difference-in-differences (SM-DID) approach. Sustainability 2021, 13, 804. [Google Scholar] [CrossRef]
- Ahadzie, D.K.; Mensah, H.; Simpeh, E. Impact of floods, recovery, and repairs of residential structures in Ghana: Insights from homeowners. GeoJournal 2022, 87, 3133–3148. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Zwain, H.M.; Hassan, W.H. Modeling the impacts of climate change and flooding on sanitary sewage system using SWMM simulation: A case study. Results Eng. 2021, 12, 100307. [Google Scholar] [CrossRef]
- Sohail, M.T.; Mahfooz, Y.; Aftab, R.; Yen, Y.; Talib, M.A.; Rasool, A. Water quality and health risk of public drinking water sources: A study of filtration plants installed in Rawalpindi and Islamabad, Pakistan. Desalin. Water Treat. 2020, 181, 239–250. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Ye, T.; An, R.; Chen, C. A new approach to estimating flood-affected populations by combining mobility patterns with multi-source data: A case study of Wuhan, China. Int. J. Disaster Risk Reduct. 2021, 55, 102106. [Google Scholar] [CrossRef]
- He, Y.; Rentschler, J.; Avner, P.; Gao, J.; Yue, X.; Radke, J. Mobility and Resilience a Global Assessment of Flood Impacts on Road Transportation Networks. 2022. Available online: https://openknowledge.worldbank.org/handle/10986/37452 (accessed on 26 August 2022).
- Wiśniewski, S.; Kowalski, M.; Borowska-Stefańska, M. Flooding and mobility: A polish analysis. Environ. Hazards 2021, 20, 300–322. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D. A modelling framework to design an evacuation support system for healthcare infrastructures in response to major flood events. Prog. Disaster Sci. 2022, 13, 100218. [Google Scholar] [CrossRef]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M.; Sanderson, D.; Dixit, V. An integrated decision model for managing hospital evacuation in response to an extreme flood event: A case study of the Hawkesbury-Nepean River, NSW, Australia. Saf. Sci. 2022, 155, 105867. [Google Scholar] [CrossRef]
- Yin, J.; Jing, Y.; Yu, D.; Ye, M.; Yang, Y.; Liao, B. A vulnerability assessment of urban emergency in schools of Shanghai. Sustainability 2019, 11, 349. [Google Scholar] [CrossRef] [Green Version]
- Welch, K.; Lambert, L.H.; Lambert, D.M.; Kenkel, P. Flood-Induced Disruption of an Inland Waterway Transportation System and Regional Economic Impacts. Water 2022, 14, 753. [Google Scholar] [CrossRef]
- Su, X.; Shao, W.; Liu, J.; Jiang, Y.; Wang, K. Dynamic assessment of the impact of flood disaster on economy and population under extreme rainstorm events. Remote Sens. 2021, 13, 3924. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.A.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Cacciotti, R.; Kaiser, A.; Sardella, A.; de Nuntiis, P.; Drdácký, M.; Hanus, C.; Bonazza, A. Climate change-induced disasters and cultural heritage: Optimizing management strategies in Central Europe. Clim. Risk Manag. 2021, 32, 100301. [Google Scholar] [CrossRef]
Urban System | Indicator Description | Indicator Computation | Note |
---|---|---|---|
Housing | Flooded dwellings | Number of dwellings that have been hit by floods | ≥20 cm of flood to informal buildings and ≥50 cm to formal. |
Average flood depth (m) (in the flooded areas) | (Sum of all flooded dwellings multiplied by their flood depth)/ (Total flooded dwellings) | ≥20 cm of flood to informal buildings and ≥50 cm to formal. | |
Sewage System | Contaminated areas by sewage system failures (m2) | Area occupied by flooded dwellings | Area contaminated by the undesired contribution of drainage network overflows to sewage networks |
Mobility | Flooded weighted roads length (km) | Length of flooded roads multiplied by hierarchy weighting factor. | The flood depth of 50 cm would represent the blockage of mobility. Hierarchy weighting factor: local streets—1, collectors—2, secondary arterials—3, main arterials—4 and highways—5 |
Flooded stations | Number of flooded stations | ≥50 cm of flood depth, including railway, subway, and bus stations | |
Community Facilities | Flooded health centers | Number of flooded health centers | ≥50 cm of flood depth |
Flooded educational centers | Number of flooded educational centers | ≥50 cm of flood depth | |
Economy | Flooded commercial centers | Number of flooded commercial centers | ≥50 cm of flood depth |
Cultural Heritage | Flooded cultural heritages | Number of flooded buildings representative of cultural heritage | ≥50 cm of flood depth |
Urban System | System Integrity Index (Is) |
---|---|
Housing | |
Sewage System | |
Mobility | 1 − |
—Length of local roads affected; —Length of collectors affected; —Length of secondary arterials affected; —Length of main arterials affected; —Length of highways affected; —Total length of local roads in the analysis area; —Total length of collectors in the analysis area; —Total length of secondary arterials in the analysis area; —Total length of main arterials affected in the analysis area; —Total length of the highways affected in the analysis area. | |
Community Facilities | |
Economy | |
Cultural Heritage |
Urban System | Area 1 | Area 2 | Area 3 | Area 4 |
---|---|---|---|---|
Housing | 95.6% | 74.9% | 55.4% | 67.4% |
Sewage System | 93.7% | 77.0% | 54.0% | 68.0% |
Mobility | 85.0% | 75.5% | 55.7% | 69.1% |
Community Facilities | 91.3% | 82.5% | 68.3% | 84.3% |
Economy | 100.0% | 74.2% | 59.2% | 78.0% |
Cultural Heritage | 88.6% | - | - | - |
Urban System | Indicator | Current Situation | Design Scenario | Gain |
---|---|---|---|---|
Housing | Flooded dwellings | 46,398 | 12,291 | 73.5% |
Average flood depth (m) (in the flooded areas) | 0.37 | 0.19 | 48.6% | |
Sewage System | Contaminated areas by sewage system failures (m2) | 1,153,368 | 420,477 | 63.54% |
Mobility | Flooded weighted roads length (km) | 270.65 | 116.85 | 56.8% |
Flooded stations | 180 | 94 | 47.8% | |
Community Facilities | Flooded health centers | 18 | 7 | 61.1% |
Flooded educational centers | 85 | 33 | 61.2% | |
Economy | Flooded commercial centers | 70 | 26 | 62.9% |
Cultural Heritage | Flooded cultural heritage | 5 | 0 | 100.0% |
Urban System | Area 1 | Area 2 | Area 3 | Area 4 | ||||
---|---|---|---|---|---|---|---|---|
CS | DS | CS | DS | CS | DS | CS | DS | |
Housing | 95.6% | 99.9% | 74.9% | 92.4% | 55.4% | 96.2% | 67.4% | 98.1% |
Sewage System | 93.7% | 99.8% | 77.0% | 93.0% | 54.0% | 97.0% | 68.0% | 97.0% |
Mobility | 85.0% | 97.7% | 75.5% | 94.5% | 55.7% | 95.0% | 69.1% | 98.9% |
Community Facilities | 91.3% | 99.8% | 82.5% | 100.0% | 68.3% | 99.4% | 84.3% | 100.0% |
Economy | 100.0% | 100.0% | 74.2% | 100.0% | 59.2% | 98.1% | 78.0% | 100.0% |
Cultural Heritage | 88.6% | 100.0% | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, A.K.B.; Battemarco, B.P.; Barbaro, G.; Gomes, M.V.R.; Cabral, F.M.; de Oliveira Pereira Bezerra, R.; de Araújo Rutigliani, V.; Lourenço, I.B.; Machado, R.K.; Rezende, O.M.; et al. Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience. Infrastructures 2022, 7, 153. https://doi.org/10.3390/infrastructures7110153
de Oliveira AKB, Battemarco BP, Barbaro G, Gomes MVR, Cabral FM, de Oliveira Pereira Bezerra R, de Araújo Rutigliani V, Lourenço IB, Machado RK, Rezende OM, et al. Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience. Infrastructures. 2022; 7(11):153. https://doi.org/10.3390/infrastructures7110153
Chicago/Turabian Stylede Oliveira, Antonio Krishnamurti Beleño, Bruna Peres Battemarco, Giuseppe Barbaro, Maria Vitória Ribeiro Gomes, Felipe Manoel Cabral, Ronan de Oliveira Pereira Bezerra, Victória de Araújo Rutigliani, Ianic Bigate Lourenço, Rodrigo Konrad Machado, Osvaldo Moura Rezende, and et al. 2022. "Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience" Infrastructures 7, no. 11: 153. https://doi.org/10.3390/infrastructures7110153
APA Stylede Oliveira, A. K. B., Battemarco, B. P., Barbaro, G., Gomes, M. V. R., Cabral, F. M., de Oliveira Pereira Bezerra, R., de Araújo Rutigliani, V., Lourenço, I. B., Machado, R. K., Rezende, O. M., de Magalhães, P. C., Veról, A. P., & Miguez, M. G. (2022). Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience. Infrastructures, 7(11), 153. https://doi.org/10.3390/infrastructures7110153