Building Information Modeling (BIM) Application for a Section of Bologna’s Red Tramway Line
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
- North-West area, in correspondence with Via della Pietra, where a single double-track tram platform is planned (BD_L2 section);
- Central area, in correspondence with the “Fiorini” stop, where a fork is foreseen for the tracks serving the stop itself (BD_L2_FC section);
- South-East area, in correspondence with Via del Triumvirato, where the two tram tracks join to form a single one (BS_L2 section).
3.1. The BIM Design
3.2. Tram Stop’s Design
3.3. MEP Design
3.4. “Clash Detection” Structure
- Structures (existing buildings and tramway stop structure);
- Tram substructure (from lean concrete to ERS/CRS blocking);
- Armament (60R2 rails and ERS/CRS system);
- Roads (lanes, curbs and sidewalks);
- Tram subservices (MV, fiber, traction ground, LV, feader);
- Lighting (light poles, protective tubes and junction boxes);
- Existing systems (aqueduct, low-pressure gas and sewage system).
- HARD “H” → by intersection;
- SOFT “S” → for space margin (Clearance clash).
4. The Managing Phase
4.1. Data Organization
- WBS coding;
- CLASH category;
- Type of plant (in the MEP case);
- Creation phase;
- Demolition phase.
4.2. Clash Detection Activity
- Thematic groupings of clashes that report upon individual clashes within each compartment category (for example, and in this research “Existing Systems vs. Tram Substructure”);
- Snapshots of every clash identified to aid communication with all designers;
- Clash point coordinates (as x, y and z coordinates) to determine the exact pin-point location of the clash within the federated BIM model;
- The date that the clash was found;
- Clash status (active and unresolved or resolved);
- A written description of the clash;
- A numerical value in meters (m) or millimeters (mm) that quantifies the positional (clash) error [41].
4.3. 4D Temporal Simulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pasetto, M.; Giordano, A.; Borina, P.; Giacomello, G. Integrated railway design using Infrastructure-Building Information Modeling. The case study of the port of Venice. Transp. Res. Procedia 2020, 45, 850–857. [Google Scholar] [CrossRef]
- Succar, B. Building information modeling framework: A research and delivery foundation for industry stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- D’Amico, F.; D’Ascanio, L.; De Falco, M.C.; Ferrante, C.; Presta, D.; Tosti, F. BIM for infrastructure: An efficient process to achieve 4D and 5D digital dimensions. Eur. Transp. 2020, 77-89, 77–89. [Google Scholar] [CrossRef]
- Lopez, R.; Chong, H.Y.; Wang, X.; Graham, J. Technical review: Analysis and appraisal of four-dimensional building information modeling Usability in construction and engineering designs. J. Constr. Eng. Manag. 2016, 142, 005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hu, Z. BIM- and 4D-based integrated solution of analysis and management for conflicts and structural safety problems during construction: 1. Principles and methodologies. Autom. Constr. 2011, 20, 167–180. [Google Scholar] [CrossRef]
- Collao, J.; Lozano-Galant, F.; Lozano-Galant, J.A.; Turmo, J. BIM Visual Programming Tools Applications in Infrastructure Designs: A State-of-the-Art Review. Appl. Sci. 2021, 11, 8343. [Google Scholar] [CrossRef]
- Sresakoolchai, J.; Kaewunruen, S. Integration of building information modeling (BIM) and artificial intelligence (AI) to detect combined defects of infrastructure in the railway system. In Resilient Infrastructure; Springer: Singapore, 2022; Volume 202, pp. 377–386. [Google Scholar]
- Vilutienė, T.; Šarkienė, E.; Šarka, V.; Kiaulakis, A. Bim application in infrastructure designs. Balt. J. Road Bridge Eng. 2020, 15, 74–92. [Google Scholar] [CrossRef]
- Poirier, E.A.; French, S.S.; Forgues, D. Measuring the Impact of BIM on Labor Productivity in a Small Specialty Contracting Enterprise Through Action-Research. Autom. Constr. 2015, 58, 74–84. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, L.; Han, Y.; Wu, Z.; Wang, N. OpenBIM: An Enabling Solution for Information Interoperability. Appl. Sci. 2019, 9, 5358. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.B.; Chou, H.Y. Subjective Benefit Evaluation Model for Immature BIM-Enabled Stakeholders. Autom. Constr. 2019, 106, 102908. [Google Scholar] [CrossRef]
- Samimpay, R.; Saghatforoush, E. Benefits of implementing building information modeling (BIM) in infrastructure designs. J. Eng. Proj. Prod. Manag. 2020, 10, 123–140. [Google Scholar]
- Biancardo, S.A.; Intignano, M.; Viscione, N.; Guerra De Oliveira, S.; Tibaut, A. Procedural Modeling-Based BIM Approach for Railway Design. J. Adv. Transp. 2021, 2021, 8839362. [Google Scholar] [CrossRef]
- Neves, J.; Sampaio, Z.; Vilela, M. A case study of BIM implementation in rail track rehabilitation. Infrastructures 2019, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Vignali, V.; Acerra, E.M.; Lantieri, C.; Di Vincenzo, F.; Piacentini, G.; Pancaldi, S. Building Information Modeling (BIM) application for an existing road infrastructure. Autom. Constr. 2021, 128, 103–752. [Google Scholar] [CrossRef]
- Lin, Y.; Lo, N.; Hu, H.; Hsu, Y. Collaboration-Based BIM Model Development Management System for General Contractors in Infrastructure Designs. J. Adv. Transp. 2020, 2020, 8834389. [Google Scholar] [CrossRef]
- Shyamkant, B.G.; Patil, A.; Pataskar, S. Cost and Time Optimization for Construction of Residential Building by Clash detection in Building Information Model (BIM). Int. Res. J. Eng. Technol. 2017, 4, 01. [Google Scholar]
- Pu, H.; Fan, X.; Schonfeld, P.; Li, W.; Zhang, W.; Wei, F.; Li, C. Extending IFC for multi-component subgrade modeling in a railway station. Autom. Constr. 2022, 141, 104433. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, X. Visualization of Railway Transportation Engineering Management Using BIM Technology under the Application of Internet of Things Edge Computing. Wirel. Commun. Mob. Comput. 2022, 2022. [Google Scholar] [CrossRef]
- Nast, A.; Koch, C. BIM adoption in small-scale infrastructure projects–investigation on the German railway sector. In Proceedings of the 14th European Conference on Product & Process Modelling (ECPPM 2022), Trondheim, Norway, 14–16 September 2022. [Google Scholar]
- Neves, J.; Sampaio, Z.; Vilela, M. Analysis of BIM implementation on railway infrastructures through an application to rail track rehabilitation and inspection. In Advances in Transportation Geotechnics IV; Springer: Cham, Switzerland, 2022; Volume 4, pp. 665–675. [Google Scholar]
- Gu, S.; Liu, B.; Lv, X.; Li, H.; Wang, R. Research on Data Exchange Schema for Railway Infrastructure. In Proceedings of the 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), IEEE, Beijing, China, 3–5 October 2022; pp. 1793–1798. [Google Scholar]
- Xiaoling, H.E.; Wanqi, W.A.N.G.; Fang, G.U.O. Analysis and Research on the Railway Digital Engineering Certification System Establishment. In Proceedings of the International Conference on Information Economy, Data Modeling and Cloud Computing, ICIDC, Qingdao, China, 17–19 June 2022. [Google Scholar]
- Li, G. Visualization and supervision system of railway engineering construction process based on BIM technology. In Proceedings of the 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE, Changsha, China, 15–16 January 2022; pp. 557–566. [Google Scholar]
- Großauer, K.; Huis, M.; Jedlitschka, G.; Matt, R.; Mulitzer, G.; Zwittnig, G. New built and refurbished railway tunnels: Data delivery from BIM Models to OEBB’s asset management. Geomech. Tunn. 2022, 15, 190–200. [Google Scholar] [CrossRef]
- Garramone, M.; Tonelli, E.; Scaioni, M. A Multi-Scale Bim/gis Framework for Railways Asset Management. In Proceedings of the 2022 Measurement, Visualisation and Processing in BIM for Design and Construction Management II; International Society for Photogrammetry and Remote Sensing, Nice, France, 7–8 February 2022; Volume 46, pp. 95–102. [Google Scholar]
- Lei, J.; Han, Z.; Yang, G.; Han, Y. Research and Application of BIM Technology in Steel Structure Engineering of Beijing Fengtai Railway Station. J. Inf. Technol. Civ. Eng. Archit. 2022, 14, 116–119. [Google Scholar]
- Kang, J.Y.; Hasan, S.M.; Min, J.S.; An, J.S.; Choi, J.W. Rule-based Review and Automated Quality Management Process of BIM deliverables for Railway Infrastructures. J. KIBIM 2022, 12, 23–34. [Google Scholar]
- Du, L.; Tong, Y.; Yan, X.; Zhang, T.; Zheng, M. Application of Construction Grid Management in Hangzhou West Railway Station Based on 4D-BIM Technology. J. Inf. Technol. Civ. Eng. Archit. 2022, 14, 18–27. [Google Scholar]
- Won, J.; Kim, T.; Yu, J.; Choo, S. Development of the IFC Schema Extension Methodology for Integrated BIM. Co-Creat. Future–Ecaade 2022, 2, 40–339. [Google Scholar]
- Hagedorn, P.; Liu, L.; König, M.; Hajdin, R.; Blumenfeld, T.; Stöckner, M.; Gavin, K. BIM-Enabled Infrastructure Asset Management Using Information Containers and Semantic Web. J. Comput. Civ. Eng. 2023, 37, 04022041. [Google Scholar] [CrossRef]
- Mahalingam, A.; Kashyap, R.; Mahajan, C. An evaluation of the applicability of 4D CAD on construction projects. Autom. Constr. 2010, 19, 148–159. [Google Scholar] [CrossRef]
- Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [Google Scholar] [CrossRef]
- Ministry of Infrastructures and Transports. Norme Funzionali e Geometriche per la Costruzione delle Strade; Decreto Ministeriale n. 6792 del 5/11/2001; Ministry of Infrastructures and Transports: Rome, Italy, 2001. Available online: https://www.mit.gov.it/normativa/decreto-ministeriale-protocollo-6792-del-05112001 (accessed on 5 November 2001). (In Italian)
- Censorii, F.; Cotignoli, L.; Vignali, V.; Bartoli, A. Sustainable and Resistant Road Infrastructures: The Role of the Envision Framework as a Guide to a New Design Approach. Coatings 2022, 12, 236. [Google Scholar] [CrossRef]
- Malsane, S.; Matthews, J.; Lockley, S.; Amore, P.; Greenwood, D. Development of an object model for automated compliance checking. Autom. Constr. 2015, 49, 51–58. [Google Scholar] [CrossRef]
- McKinney, K.; Fischer, M. Generating, evaluating and visualizing construction schedules with CAD tools. Autom. Constr. 1998, 7, 433–447. [Google Scholar] [CrossRef]
- Jongeling, R.; Kim, J.; Fischer, M.; Mourgues, C.; Olofsson, T. Quantitative analysis of workflow, temporary structure usage, and productivity using 4D models. Autom. Constr. 2008, 17, 780–791. [Google Scholar] [CrossRef]
- Eastman, C.; Lee, J.M.; Jeong, Y.S.; Lee, J.K. Automatic rule-based checking of building designs. Autom. Constr. 2009, 18, 1011–1033. [Google Scholar] [CrossRef]
- Chidambaram, S. The application of clash-detection processes in building information modelling for rebars. Proc. Inst. Civ. Eng.–Smart Infrastruct. Constr. 2019, 172, 53–69. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. Origins and probabilities of MEP and structural design clashes within a federated BIM model. Autom. Constr. 2018, 85, 209–219. [Google Scholar] [CrossRef]
Strutture | Strade | Sottostruttura tram | Armamento | Sottoservizi tram | Illuminazione | Impianti esistenti | |
---|---|---|---|---|---|---|---|
Strutture | - | ||||||
Strade | S01 | - | |||||
Sottostruttura tram | S005 | H01 | H01 | ||||
Armamento | - | - | H01 | H01 | |||
Sottoservizi tram | H001 | H001 | H001 | - | - | ||
Illuminazione | - | H01 | H01 | - | - | - | |
Impianti esistenti | - | H01 | S10 | - | H01 | - | S20 |
Legend | ||
---|---|---|
Denomination | Clash Type | Priority |
S001 | Soft Clash—0.1 cm | High |
S01 | Soft Clash—1 cm | High |
S10 | Soft Clash—10 cm | Medium |
H001 | Hard Clash—0.1 cm | Medium |
H01 | Hard Clash—1 cm | Low |
Name | Status | Clashes | New | Active | Reviewed | Approved | Resolved |
---|---|---|---|---|---|---|---|
H01—Armament vs. Armament | Done | 2 | 0 | 0 | 0 | 2 | 0 |
H01—Existing Systems vs. Roads | Done | 3 | 3 | 0 | 0 | 0 | 0 |
S01—Existing Systems vs. Tram Substructure | Done | 1 | 1 | 0 | 0 | 0 | 0 |
H01—Lighting vs. Tram Substructure | Done | 2 | 2 | 0 | 0 | 0 | 0 |
H01—Lighting vs. Roads | Done | 2 | 1 | 0 | 0 | 1 | 0 |
Item 1 ID | Item 2 ID | |||||||
Image | Clash Name | Status | Distance | Description | Date found | Clash Point | Layer Name | Layer Name |
Subservice 1 | Active | −0.291 | Hard | 04/05/2022 | x: 682,041.990 y: 4,931,428.177 z: 43,679 | Existing Systems | Roads |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acerra, E.M.; Busquet, G.F.D.; Parente, M.; Marinelli, M.; Vignali, V.; Simone, A. Building Information Modeling (BIM) Application for a Section of Bologna’s Red Tramway Line. Infrastructures 2022, 7, 168. https://doi.org/10.3390/infrastructures7120168
Acerra EM, Busquet GFD, Parente M, Marinelli M, Vignali V, Simone A. Building Information Modeling (BIM) Application for a Section of Bologna’s Red Tramway Line. Infrastructures. 2022; 7(12):168. https://doi.org/10.3390/infrastructures7120168
Chicago/Turabian StyleAcerra, Ennia Mariapaola, Gian Franco Daniel Busquet, Marco Parente, Margherita Marinelli, Valeria Vignali, and Andrea Simone. 2022. "Building Information Modeling (BIM) Application for a Section of Bologna’s Red Tramway Line" Infrastructures 7, no. 12: 168. https://doi.org/10.3390/infrastructures7120168
APA StyleAcerra, E. M., Busquet, G. F. D., Parente, M., Marinelli, M., Vignali, V., & Simone, A. (2022). Building Information Modeling (BIM) Application for a Section of Bologna’s Red Tramway Line. Infrastructures, 7(12), 168. https://doi.org/10.3390/infrastructures7120168