Asset Valuation Model for Highway Rigid Pavements Applicable in Public–Private Partnerships Projects †
Abstract
:1. Introduction
2. Development of the Valuation Model for Rigid Pavements
2.1. Technical Indicators of the Proposed Model
2.2. Equations and Required Data to Apply the Proposed Model
2.3. Additional Comments about the Proposed Model
3. Case Study
3.1. Route Description, Available Data and Data Processing
3.2. Results Obtained in 2007 and 2020 for Lanes 3 and 4 Using the Proposed Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alyami, Z.; Tighe, S. A Methodology for Integrating Asset Valuation in Transportation Asset Management. In Resilient Infrastructure, Proceedings of the 11th International Transportation Specialty Conference at the Canadian Society of Civil Engineers CSCE, London, ON, Canada, 1–4 June 2016; Canadian Society for Civil Engineering (CSCE): Surrey, BC, Canada, 2017. [Google Scholar]
- Federal Highway Administration. Incorporating Asset Valuation into Transportation Asset Management Financial Plans; Report FHWA-HIF-16-009; Office of Asset Management Pavements and Construction, Federal Highway Administration: Washington, DC, USA, 2016. [Google Scholar]
- Dojutrek, M.; Volovski, M.; Labi, S. Elemental Decomposition and Multicriteria Method for Valuing Transportation Infrastructure. Transp. Res. Rec. 2014, 2460, 137–145. [Google Scholar] [CrossRef]
- Amekudzi, A.; Herabat, P.; Wang, S.; Lancaster, C. Multipurpose Asset Valuation for Civil Infrastructure: Aligning Valuation Approaches with Asset Management Objectives and Stakeholder Interests. Transp. Res. Rec. 2002, 1812, 211–218. [Google Scholar] [CrossRef]
- Falls, L.C.; Haas, R.; Tighe, S. A Framework for Selection of Asset Valuation Methods for Civil Infrastructure. In Proceedings of the 2005 Annual Conference of the Transportation Association of Canada Session: Very Long-term Life Cycle Analysis of Pavements—Determining the True Value of our Investment, Calgary, AB, Canada, 18–21 September 2005. [Google Scholar]
- Yuan, X.-X.; Li, Y. Residual Value Risks of Highway Pavements in Public–Private Partnerships. J. Infrastruct. Syst. 2018, 24, 04018020. [Google Scholar] [CrossRef]
- Weldemicael, E.; Li, S.X.; Redd, L. Asset Valuation of Transportation Infrastructure: Proof of Concept in Colorado. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Organization for Economic Co-Operation and Development. Asset Management for the Roads Sector; OECD Publication Service: Paris, France, 2001. [Google Scholar] [CrossRef] [Green Version]
- Stone, C.D. A Methodological Framework for Economic Evaluation of Existing Roadway Assets. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2014. [Google Scholar]
- Islami, R.C.; Hazhiyah, A.U. Correlation Model Between Estimated Project Cost and Net Present Value (NPV) on Transportation Infrastructure Projects Using Public Private Partnership (PPP) Scheme. J. Phys. Conf. Ser. 2020, 1625, 012029. [Google Scholar] [CrossRef]
- Amekudzi-Kennedy, A.; Labi, S.; Singh, P. Transportation Asset Valuation: Pre-, Peri- and Post-Fourth Industrial Revolution. Transp. Res. Rec. 2019, 2673, 163–172. [Google Scholar] [CrossRef]
- Dojutrek, M.; Makwana, P.; Labi, S. A Methodology for Highway Asset Valuation in Indiana; Final Report FHWA/IN/JTRP-2012/31; Joint Transportation Research Program and Purdue University: West Lafayette, IN, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Public-Private Partnerships Reference Guide. International Bank for Reconstruction and Development; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Ministerio de Obras Públicas. Bases de Licitación: Concesión Ruta 5 Tramo Talca-Chillán. Dirección General de Concesiones; Ministerio de Obras Públicas: Santiago, Chile, 2019. [Google Scholar]
- Ministerio de Obras Públicas. Bases de Licitación: Segunda Concesión Autopista Santiago-San Antonio, Ruta 78; Dirección General de Concesiones, Ministerio de Obras Públicas: Santiago, Chile, 2021. [Google Scholar]
- Ministerio de Obras Públicas. Estimación del Valor Patrimonial de la Concesión Talca-Chillán; Informe Final DDQ-MOP-001-19-010-03; Dirección General de Concesiones, Ministerio de Obras Públicas: Santiago, Chile, 2019. [Google Scholar]
- Ministerio de Obras Públicas. Estudio integral concesión Ruta 78: Tramo Santiago-San Antonio y Tramo Acceso Vial a Puertos; Informe Final 19-D09-1-R78-A4-PV-ING-INF-001-C; Dirección General de Concesiones, Ministerio de Obras Públicas: Santiago, Chile, 2021. [Google Scholar]
- Ministerio de Obras Públicas. Estudio Básico: Metodología para la Determinación del Patrimonio Vial; Informe Final DDQ-107-08-ID-VO-PV-IDI-006-Vb; Departamento de Gestión Vial, Dirección de Vialidad, Ministerio de Obras Públicas: Santiago, Chile, 2014. [Google Scholar]
- Delgadillo, R.; Echaveguren, T.; Wahr, C.; Muñoz, R.; Gómez, J.; Jiménez, G.; Ebensperger, M. Manual Técnico para Licitación de Concesiones Viales por Nivel de Servicio; Informe Final DT-06-2020 Proyecto FONDEF, IT16I10008; Universidad Técnica Federico Santa María: Valparaíso, Chile; Universidad de Concepción: Concepción, Chile, 2020. [Google Scholar]
- Marzal, I. Desarrollo de un Método de Valorización para el Activo Pavimentos Asfálticos, Compatible con el Nivel de Servicio a Usuarios, Aplicable a Carreteras Interurbanas Concesionadas. Master’s Thesis, Universidad Técnica Federico Santa María, Valparaíso, Chile, 2021. [Google Scholar]
- Acharya, D. Transportation Asset Valuation. Master’s Thesis, The University of Toledo, Toledo, OH, USA, 2014. [Google Scholar]
- Falls, L.C.; Haas, R.C.G.; Tighe, S.L. A Comparison of Asset Valuation Methods for Civil Infrastructure. In Proceedings of the 6th International Conference on Managing Pavements: The Lessons, The Challenges, The Way Ahead, Brisbane, QLD, Australia, 19–24 October 2004. [Google Scholar]
- Lim, T.; Porras-Alvarado, J.D.; Zhang, Z. Pricing of Highway Infrastructure for Transportation Asset Management. BEPAM 2019, 9, 64–79. [Google Scholar] [CrossRef]
- Delgadillo, R.; Wahr, C.; Alarcón, J.P. Towards the Implementation of the MEPDG in Latin America, Preliminary Work Carried Out in Chile. Transp. Res. Rec. 2011, 2226, 142–148. [Google Scholar] [CrossRef]
- Salsilli, R.; Delgadillo, R.; Wahr, C.; Huerta, J.; Sepúlveda, D. Field Performance of Concrete Pavements with Short Slabs and Design Method Calibrated for Chilean Conditions. Int. J. Pavement Eng. 2015, 16, 363–379. [Google Scholar] [CrossRef]
- Delgadillo, R.; Echaveguren, T.; Wahr, C.; Osorio, A.; Araya, F.; Marzal, I.; Arce, L.; Umaña, D.; Paredes, N.; Segura, R. Manual Técnico para la Valorización de Activos Viales Concesionados Compatible con el Nivel de Servicio a los Usuarios; Informe Final DT-H4-2023; Proyecto FONDEF, ID20I10072; Universidad Técnica Federico Santa María: Valparaíso, Chile; Universidad de Concepción: Concepción, Chile, 2023. [Google Scholar]
- Ministerio de Obras Públicas. Manual de Carreteras: Volumen N°8. Especificaciones y Métodos de Muestreo, Ensaye y Control; Dirección de Vialidad, Ministerio de Obras Públicas: Santiago, Chile, 2022. [Google Scholar]
- Arce, L. Desarrollo de un Modelo de Valorización de Pavimentos de Hormigón de Carreteras Concesionadas Interurbanas Compatible con el Nivel de Servicio a los Usuarios. Master’s Thesis, Universidad Técnica Federico Santa María, Valparaíso, Chile, 2023. [Google Scholar]
- Ministerio de Obras Públicas. Bases de Licitación: Concesión Autopista Santiago San Antonio, Ruta 78; Dirección General de Concesiones, Ministerio de Obras Públicas: Santiago, Chile, 1995. [Google Scholar]
Characteristic | Technical Indicator | Unit |
---|---|---|
Roughness | Mean Roughness Index (MRI) | m/km |
Friction | Sideway Force Coefficient (SFC) | - |
Rolling noise | Overall A-weighted Sound Intensity Level (OASI) | dBA |
Load transfer | Load transfer efficiency percentage (LT) | % |
Cracking | Percentage of cracked slabs (CRK) | % |
Potholes | Percentage of potholes (PP) | % |
Technical Indicator | Frequency of Testing | Measurement Equipment | Normative(s) to Follow |
---|---|---|---|
MRI | Annual | Inertial profilometer (class 1) | ASTM E950 |
SFC | Annual | SCRIM, grip tester or runway friction tester | MC 8.502.17 [27]; MC 8.502.18 [27]; ASTM E2340M |
OASI | Annual | OBSI measurement system | AASHTO T360 |
LT | Once every 3 years | Falling weight deflectometer (FWD) | MC 8.502.5 [27] |
CRK | Annual | Crack measurement equipment C2221 | AASHTO PP 68 ASTM E-1656 MC 8 Appendix [27] |
PP | Annual | T1111 profilometer + Visual inspection |
Equation (Number) | Description of Variables and Parameters |
---|---|
(2) | : Lane width and section length, respectively. : Subgrade preparation unitary cost. : Number of pavement layers in the section (subbase and/or base, and concrete slabs). : Layer “i” unitary cost and thickness, respectively. |
(3) | : Rehabilitation cost associated with potholes and performance indicators, respectively. |
: Reconstruction unitary cost (existing pavement removal or recycling cost, plus the construction cost). | |
(5) | : Rehabilitation cost associated with cracking, load transfer, roughness, friction and rolling noise, respectively. |
(6) | : Concrete slab replacement unitary cost. : Percentage of cracked slabs. |
(7) | : Number of slabs and cracked slabs, respectively. : Dowel bar retrofit unitary cost (it is multiplied by 6 since 3 bars are installed per wheel path at each joint). : Loss percentage associated with load transfer. |
(8) | : Diamond grinding unitary cost. Loss percentage associated with roughness. |
(9) | Loss percentage associated with friction. |
(10) | Loss percentage associated with rolling noise. |
Performance Level | MRI [m/km] (50 m) (1 km) | SFC [-] | OASI [dBA] | CRK [%] | LT [%] | |
---|---|---|---|---|---|---|
Very Good | [0.0, 1.5) | [0.0, 1) | (0.65, 1.00] | ≤100.0 | [0, 5) | ≥70 |
Good | [1.5, 2.5) | [1.0, 2.0) | (0.55, 0.65] | (100, 102] | [5, 10) | [60, 70) |
Fair | [2.5, 3.5) | [2.0, 3.0) | (0.40, 0.55] | (102, 104] | [10, 15) | [50, 60) |
Poor | [3.5, 5.0) | [3.0, 4.5) | (0.20, 0.40] | (104, 106] | [15, 20) | [40, 50) |
Very Poor | ≥5.0 | ≥4.5 | [0, 0.20] | >106 | ≥20 | <40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce, L.; Delgadillo, R.; Osorio-Lird, A.; Araya, F.; Wahr, C. Asset Valuation Model for Highway Rigid Pavements Applicable in Public–Private Partnerships Projects. Infrastructures 2023, 8, 118. https://doi.org/10.3390/infrastructures8080118
Arce L, Delgadillo R, Osorio-Lird A, Araya F, Wahr C. Asset Valuation Model for Highway Rigid Pavements Applicable in Public–Private Partnerships Projects. Infrastructures. 2023; 8(8):118. https://doi.org/10.3390/infrastructures8080118
Chicago/Turabian StyleArce, Luis, Rodrigo Delgadillo, Alelí Osorio-Lird, Felipe Araya, and Carlos Wahr. 2023. "Asset Valuation Model for Highway Rigid Pavements Applicable in Public–Private Partnerships Projects" Infrastructures 8, no. 8: 118. https://doi.org/10.3390/infrastructures8080118