Images of Roman Imperial Denarii: A Curated Data Set for the Evaluation of Computer Vision Algorithms Applied to Ancient Numismatics, and an Overview of Challenges in the Field
Abstract
:1. Introduction
2. Computer Vision and Machine Learning Challenges within the Domain of Ancient Numismatics
2.1. Terminology
2.2. Grading
2.3. Practical Applications
2.4. Research Effort to Date
3. Curation: Motivation Thereof and Our Data
3.1. Our Corpus of Roman Imperial Denarii
Why Denarii?
3.2. Curation
3.3. Data Set Description
3.4. Caveat Scolasticus
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Ranjan, R.; Patel, V.M.; Chellappa, R. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; Oliva, A. Learning deep features for scene recognition using places database. Adv. Neural Inf. Process. Syst. 2014, 1, 487–495. [Google Scholar]
- Niemeyer, M.; Arandjelović, O. Automatic semantic labelling of images by their content using non-parametric Bayesian machine learning and image search using synthetically generated image collages. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics, Turin, Italy, 1–3 October 2018; pp. 160–168. [Google Scholar]
- Thirlwell, A.; Arandjelović, O. Big data driven detection of trees in suburban scenes using visual spectrum eye level photography. Sensors 2020, 20, 3051. [Google Scholar] [CrossRef] [PubMed]
- Brzezicki, M.A.; Bridger, N.E.; Kobetić, M.D.; Ostrowski, M.; Grabowski, W.; Gill, S.S.; Neumann, S. Artificial intelligence outperforms human students in conducting neurosurgical audits. Clin. Neurol. Neurosurg. 2020, 192, 105732. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, N.; Arandjelović, O.; Harrison, D.; Caie, P.D. A principled machine learning framework improves accuracy of stage II colorectal cancer prognosis. npj Digit. Med. 2018, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, X.; Dimitriou, N.; Arandjelović, O. Colorectal cancer outcome prediction from H&E whole slide images using machine learning and automatically inferred phenotype profiles. In Proceedings of the International Conference on Bioinformatics and Computational Biology, Honolulu, HI, USA, 18–20 March 2019. [Google Scholar]
- Goeting, M. Seeing the world through machinic eyes: Reflections on Computer vision in the arts. In Proceedings of the Workshops of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 653–670. [Google Scholar]
- Lang, S.; Ommer, B. Attesting similarity: Supporting the organization and study of art image collections with computer vision. Digit. Scholarsh. Humanit. 2018, 33, 845–856. [Google Scholar] [CrossRef]
- Brown, I.; Arandjelović, O. Making Japenese ukiyo-e art 3D in real-time. Science 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.R.M. A Dictionary of Ancient Roman Coins; Seaby: London, UK, 1990. [Google Scholar]
- Sutherland, C.H.V.; Carson, R.A.G. The Roman Imperial Coinage; Spink: London, UK, 1923; Volume 1–10. [Google Scholar]
- Arandjelović, O. Reading ancient coins: Automatically identifying denarii using obverse legend seeded retrieval. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Cham, Switzerland, 2012; Volume 4, pp. 317–330. [Google Scholar]
- Arandjelović, O. Automatic attribution of ancient Roman imperial coins. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–13 June 2010; pp. 1728–1734. [Google Scholar]
- Zaharieva, M.; Kampel, M.; Zambanini, S. Image based recognition of ancient coins. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Vienna, Austria, 27–29 August 2007; pp. 547–554. [Google Scholar]
- Aslan, S.; Vascon, S.; Pelillo, M. Two sides of the same coin: Improved ancient coin classification using Graph Transduction Games. Pattern Recognit. Lett. 2020, 131, 158–165. [Google Scholar] [CrossRef]
- Schlag, I.; Arandjelović, O. Ancient Roman coin recognition in the wild using deep learning based recognition of artistically depicted face profiles. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2898–2906. [Google Scholar]
- Cooper, J.; Arandjelović, O. Visually understanding rather than merely matching ancient coin images. In Proceedings of the INNS Conference on Big Data and Deep Learning, SESTRI LEVANTE, Genoa, Italy, 16–18 April 2019; pp. 330–340. [Google Scholar]
- Conn, B.; Arandjelović, O. Towards computer vision based ancient coin recognition in the wild—Automatic reliable image preprocessing and normalization. In Proceedings of the IEEE International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017; pp. 1457–1464. [Google Scholar]
- Cooper, J.; Arandjelović, O. Learning to describe: A new approach to computer vision for ancient coin analysis. Science 2020, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, H. The Roman Imperial Coinage; Spink: London, UK, 1966; Volume 7. [Google Scholar]
- Hartmann, C.; Hammerl, F.; Volk, W. Experimental analysis of Roman coin minting. J. Archaeol. Sci. Rep. 2019, 25, 498–506. [Google Scholar] [CrossRef]
- Prokopov, I.; Manov, R. Counterfeit Studios and Their Coins; SP-P & Provias: Sofia, Bulgaria, 2005. [Google Scholar]
- Lowe, D.G. Local feature view clustering for 3D object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; pp. 682–688. [Google Scholar]
- Kampel, M.; Zaharieva, M. Recognizing ancient coins based on local features. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 1–3 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1, pp. 11–22. [Google Scholar]
- Azad, P.; Asfour, T.; Dillmann, R. Combining Harris interest points and the SIFT descriptor for fast scale-invariant object recognition. In Proceedings of the International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 4275–4280. [Google Scholar]
- Wang, B.; Liang, W.; Wang, Y.; Liang, Y. Head pose estimation with combined 2D SIFT and 3D HOG features. In Proceedings of the International Conference on Image and Graphics, Qingdao, China, 26–28 July 2013; pp. 650–655. [Google Scholar]
- Rieutort-Louis, W.; Arandjelović, O. Description transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device. In Proceedings of the IEEE International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016; pp. 3030–3037. [Google Scholar]
- Martin, R.; Arandjelović, O. Multiple-object tracking in cluttered and crowded public spaces. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 29 November–1 December 2010; pp. 89–98. [Google Scholar]
- Arandjelović, O. Object matching using boundary descriptors. In Proceedings of the British Machine Vision Conference, Surrey, UK, 3–7 September 2012. [Google Scholar] [CrossRef] [Green Version]
- Arandjelović, O. Matching Objects across the Textured—Smooth Continuum. In Proceedings of the Australasian Conference on Robotics and Automation, Wellington, New Zealand, 3–5 December 2012; pp. 354–361. [Google Scholar]
- Llamas, J.; Lerones, P.M.; Zalama, E.; Gómez-García-Bermejo, J. Applying deep learning techniques to cultural heritage images within the inception project. In Proceedings of the Euro-Mediterranean Conference, Nicosia, Cyprus, 31 October–5 November 2016; pp. 25–32. [Google Scholar]
- Obeso, A.M.; Vázquez, M.S.G.; Acosta, A.A.R.; Benois-Pineau, J. Connoisseur: Classification of styles of Mexican architectural heritage with deep learning and visual attention prediction. In Proceedings of the International Workshop on Content-based Multimedia Indexing, Florence, Italy, 19–21 June 2017; pp. 1–7. [Google Scholar]
- Maltezos, E.; Protopapadakis, E.; Doulamis, N.; Doulamis, A.; Ioannidis, C. Understanding historical cityscapes from aerial imagery through machine learning. In Proceedings of the Euro-Mediterranean Conference, Nicosia, Cyprus, 29 October– 3 November 2018; pp. 200–211. [Google Scholar]
- Anwar, H.; Anwar, S.; Zambanini, S.; Porikli, F. CoinNet: Deep ancient Roman republican coin classification via feature fusion and attention. arXiv 2019, arXiv:1908.09428. [Google Scholar]
- Kampel, M.; Zambanini, S.; Schlapke, M.; Breuckmann, B. Highly detailed 3D scanning of ancient coins. In Proceedings of the International Committee of Architectural Photogrammetry Symposium, Kyoto, Japan, 11–15 October 2009; pp. 11–15. [Google Scholar]
- Spagnolo, G.S.; Majo, R.; Carli, M.; Ambrosini, D.; Paoletti, D. Virtual gallery of ancient coins through conoscopic holography. In Proceedings of the Optical Metrology for Arts and Multimedia, Munich, Germany, 25–26 June 2003; pp. 202–209. [Google Scholar]
- Zambanini, S.; Schlapke, M.; Hödlmoser, M.; Kampel, M. 3D acquisition of historical coins and its application area in numismatics. In Proceedings of the Computer Vision and Image Analysis of Art, San Jose, CA, USA, 16 February 2010; Volume 7531, p. 753108. [Google Scholar]
- Aicardi, I.; Chiabrando, F.; Lingua, A.M.; Noardo, F. Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. J. Cult. Herit. 2018, 32, 257–266. [Google Scholar] [CrossRef]
- Makantasis, K.; Doulamis, A.; Doulamis, N.; Ioannides, M. In the wild image retrieval and clustering for 3D cultural heritage landmarks reconstruction. Multimed. Tools Appl. 2016, 75, 3593–3629. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Fritsch, D.; Makantasis, K.; Doulamis, A.; Klein, M. Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering. J. Electron. Imaging 2016, 26, 011013. [Google Scholar] [CrossRef]
- Doulamis, N.; Doulamis, A.; Ioannidis, C.; Klein, M.; Ioannides, M. Modelling of Static and Moving Objects: Digitizing Tangible and Intangible Cultural Heritage; Springer: Cham, Switzerland, 2017; pp. 567–589. [Google Scholar]
- Doulamis, A.; Doulamis, N.; Protopapadakis, E.; Voulodimos, A.; Ioannides, M. 4D modelling in cultural heritage. In Proceedings of the International Workshop on Advances in Digital Cultural Heritage, Madeira, Portugal, 20 February 2018; pp. 174–196. [Google Scholar]
- France, F.G. Advanced spectral imaging for noninvasive microanalysis of cultural heritage materials: Review of application to documents in the US Library of Congress. Appl. Spectrosc. 2011, 65, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Tonazzini, A.; Salerno, E.; Abdel-Salam, Z.A.; Harith, M.A.; Marras, L.; Botto, A.; Campanella, B.; Legnaioli, S.; Pagnotta, S.; Poggialini, F. Analytical and mathematical methods for revealing hidden details in ancient manuscripts and paintings: A review. J. Adv. Res. 2019, 17, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Fare, C.; Arandjelović, O. Ancient Roman coin retrieval: A new dataset and a systematic examination of the effects of coin grade. In Proceedings of the European Conference on Information Retrieval, Aberdeen, Scotland, UK, 8–13 April 2017; pp. 410–423. [Google Scholar]
- Zambanini, S.; Kavelar, A.; Kampel, M. Classifying ancient coins by local feature matching and pairwise geometric consistency evaluation. In Proceedings of the International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 3032–3037. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2003, 60, 91–110. [Google Scholar] [CrossRef]
- Anwar, H.; Zambanini, S.; Kampel, M. Supporting Ancient Coin Classification by Image-Based Reverse Side Symbol Recognition. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, York, UK, 26–29 August 2013; pp. 17–25. [Google Scholar]
Issuing Authority | Number of Issues | Issues (RIC) | Time Period |
---|---|---|---|
Aelius | 2 | 434, 436 | 136–138 AD |
Antoninus Pius | 5 | 61, 62, 111, 137, 436. | 145–161 AD |
Augustus | 5 | 102, 254, 257, 270, 543 | 27 BC–14 AD |
Caligula | 2 | 2, 14 | 37–41 AD |
Caracalla | 3 | 2, 150, 658 | 198–217 AD |
Claudius | 2 | 10, 41 | 41–54 AD |
Clodius Albinus | 3 | 1, 4, 7 | 195–196 AD |
Commodus | 3 | 249, 251, 259 | 175–192 AD |
Crispina | 1 | 283 | 178–187 AD |
Diadumenian | 1 | 102 | 217–218 AD |
Domitian | 1 | 720 | 69–96 AD |
Elagabalus | 2 | 88, 156 | 218–222 AD |
Faustina I (the Elder) | 1 | 355 | 138–161 AD |
Faustina II (Junior) | 2 | 384, 517 | 147–176 AD |
Galba | 3 | 145, 167, 189 | 68–69 AD |
Geta | 2 | 51, 107 | 209–212 AD |
Gordian III | 3 | 108, 127, 130 | 238–244 AD |
Hadrian | 5 | 160, 169, 240, 297, 367 | 117–138 AD |
Julia Domna | 3 | 536, 539, 580 | 193–217 AD |
Julia Maesa | 2 | 268, 271 | 218–222 AD |
Julia Mamaea | 1 | 351 | 221–235 AD |
Julia Paula | 1 | 211 | 219–220 AD |
Julia Soaemias | 1 | 243 | 218–222 AD |
Lucilla | 1 | 770 | 164–169 AD |
Lucius Verus | 2 | 516, 576 | 161–169 AD |
Macrinus | 1 | 86 | 217–218 AD |
Marcus Aurelius | 4 | 50, 171, 426, 479 | 161–180 AD |
Maximinus | 1 | 23 | 235–238 AD |
Nero | 2 | 47, 67 | 54–68 AD |
Nerva | 2 | 15, 17 | 96–98 AD |
Orbiana | 1 | 319 | 225–227 AD |
Otho | 2 | 10, 12 | 69 AD |
Pertinax | 2 | 8, 11 | 193 AD |
Pescennius Niger | 1 | 64 | 193–194 AD |
Plautilla | 2 | 363, 369 | 202–205 AD |
Sabina | 2 | 395, 398 | 128–137 AD |
Septimius Severus | 6 | 1, 69, 106, 167, 418, 425 | 193–211 AD |
Severus Alexander | 1 | 146 | 222–235 AD |
Tiberius | 2 | 30, 224 | 14–37 AD |
Titus | 2 | 25, 220 | 79–81 AD |
Trajan | 4 | 9, 12, 243, 337 | 98–117 AD |
Vespasian | 5 | 2, 15, 30, 63, 99 | 69–79 AD |
Vitellius | 2 | 56, 109 | 69 AD |
Total | 100 | 27 BC–244 AD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arandjelović, O.; Zachariou, M. Images of Roman Imperial Denarii: A Curated Data Set for the Evaluation of Computer Vision Algorithms Applied to Ancient Numismatics, and an Overview of Challenges in the Field. Sci 2020, 2, 91. https://doi.org/10.3390/sci2040091
Arandjelović O, Zachariou M. Images of Roman Imperial Denarii: A Curated Data Set for the Evaluation of Computer Vision Algorithms Applied to Ancient Numismatics, and an Overview of Challenges in the Field. Sci. 2020; 2(4):91. https://doi.org/10.3390/sci2040091
Chicago/Turabian StyleArandjelović, Ognjen, and Marios Zachariou. 2020. "Images of Roman Imperial Denarii: A Curated Data Set for the Evaluation of Computer Vision Algorithms Applied to Ancient Numismatics, and an Overview of Challenges in the Field" Sci 2, no. 4: 91. https://doi.org/10.3390/sci2040091
APA StyleArandjelović, O., & Zachariou, M. (2020). Images of Roman Imperial Denarii: A Curated Data Set for the Evaluation of Computer Vision Algorithms Applied to Ancient Numismatics, and an Overview of Challenges in the Field. Sci, 2(4), 91. https://doi.org/10.3390/sci2040091