Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review
Abstract
:1. Introduction
2. Endocrine Disrupting Compounds and Their Impacts
3. Wastewater Treatments and EDCs Removal Procedures
4. Methodology
5. Results and Discussion
5.1. Research Article-1
5.2. Research Article-2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pelch, K.E.; Beeman, J.M.; Niebruegge, B.A.; Winkeler, S.R.; Nagel, S.C. Endocrine-disrupting chemicals (EDCs) in mammals. In Hormones and Reproduction of Vertebrates; Elsevier: Amsterdam, The Netherlands, 2011; pp. 329–371. [Google Scholar]
- Vandenberg, L.N. Low-dose effects of hormones and endocrine disruptors. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2014; Volume 94, pp. 129–165. [Google Scholar]
- Patisaul, H.B. Endocrine disruption by dietary phyto-oestrogens: Impact on dimorphic sexual systems and behaviours. Proc. Nutr. Soc. 2017, 76, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Kavlock, R.J.; Daston, G.P.; DeRosa, C.; Fenner-Crisp, P.; Gray, L.E.; Kaattari, S.; Lucier, G.; Luster, M.; Mac, M.J.; Maczka, C. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the US EPA-sponsored workshop. Environ. Health Perspect. 1996, 104, 715–740. [Google Scholar] [PubMed] [Green Version]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.; Zoeller, T.R.; World Health Organization. State of the Science of Endocrine Disrupting Chemicals 2012; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- European Commission. European Workshop on the Impact of Endocrine Disrupters on Human Health and the Environment. Environment and Climate Research Programme, DG XII, 1997; EUR 17549; European Commission: Brussels, Belgium, 1997. [Google Scholar]
- Omar, T.F.T.; Ahmad, A.; Aris, A.Z.; Yusoff, F.M. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trends Anal. Chem. 2016, 85, 241–259. [Google Scholar] [CrossRef]
- Sin, J.-C.; Lam, S.-M.; Mohamed, A.R.; Lee, K.-T. Degrading Endocrine Disrupting Chemicals from Wastewater by TiO2 Photocatalysis: A Review. Int. J. Photoenergy 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Rodriguez-Mozaz, S.; Insa, S.; Schoevaart, R.; Barceló, D.; De Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; Misovic, A.; Oehlmann, J.; et al. Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Org. Process Res. Dev. 2017, 21, 480–491. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ. Int. 2017, 106, 207–233. [Google Scholar] [CrossRef]
- Grześkowiak, T.; Czarczyńska-Goślińska, B.; Zgoła-Grześkowiak, A. Biodegradation of Selected Endocrine Disrupting Compounds. In Toxicity and Biodegradation Testing; Springer: Berlin, Germany, 2018; pp. 1–27. [Google Scholar]
- Balabanič, D.; Rupnik, M.; Klemenčič, A.K. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod. Fertil. Dev. 2011, 23, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Louis, G.M.B.; Sundaram, R.; Sweeney, A.M.; Schisterman, E.F.; Maisog, J.; Kannan, K. Urinary bisphenol A, phthalates, and couple fecundity: The Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil. Steril. 2014, 101, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Gore, A.C.; Crews, D.; Doan, L.L.; La Merrill, M.; Patisaul, H.; Zota, A. Introduction to Endocrine Disrupting Chemicals (EDCs); A Guide for Public Interest Organizations and Policy-Makers; Endocrine Society: Washington, DC, USA, 2014. [Google Scholar]
- Treviño, L.S.; Katz, T.A. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology 2017, 159, 20–31. [Google Scholar] [CrossRef]
- Servos, M.R. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Qual. Res. J. 1999, 34, 123–178. [Google Scholar] [CrossRef]
- Snyder, S.A.; Westerhoff, P.; Yoon, Y.; Sedlak, D.L. Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environ. Eng. Sci. 2003, 20, 449–469. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, W.; Mulchandani, A. Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environ. Sci. Technol. 2005, 39, 8958–8962. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, A.D.; Schug, K.A. A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems. Anal. Chim. Acta 2011, 696, 6–26. [Google Scholar] [CrossRef]
- Purdom, C.; Hardiman, P.; Bye, V.; Eno, N.; Tyler, C.; Sumpter, J. Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 1994, 8, 275–285. [Google Scholar] [CrossRef]
- Harries, J.E.; Janbakhsh, A.; Jobling, S.; Matthiessen, P.; Sumpter, J.P.; Tyler, C.R. Estrogenic potency of effluent from two sewage treatment works in the United Kingdom. Environ. Toxicol. Chem. 1999, 18, 932–937. [Google Scholar] [CrossRef]
- Harries, J.E.; Sheahan, D.A.; Matthiessen, P.; Neall, P.; Rycroft, R.; Tylor, T.; Jobling, S.; Routledge, E.J.; Sumpter, J.P. A survey of estrogenic activity in United Kingdom inland waters. Environ. Toxicol. Chem. 1996, 15, 1993–2002. [Google Scholar] [CrossRef]
- Rodgers-Gray, T.P.; Jobling, S.; Morris, S.; Kelly, C.; Kirby, S.; Janbakhsh, A.; Harries, J.E.; Waldock, M.J.; Sumpter, J.P.; Tyler, C.R. Long-term temporal changes in the estrogenic composition of treated sewage effluent and its biological effects on fish. Environ. Sci. Technol. 2000, 34, 1521–1528. [Google Scholar] [CrossRef]
- Thomas, K.V.; Hurst, M.R.; Matthiessen, P.; Waldock, M.J. Characterization of estrogenic compounds in water samples collected from United Kingdom estuaries. Environ. Toxicol. Chem. Int. J. 2001, 20, 2165–2170. [Google Scholar] [CrossRef]
- Peck, M.; Gibson, R.W.; Kortenkamp, A.; Hill, E.M. Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ. Toxicol. Chem. Int. J. 2004, 23, 945–952. [Google Scholar] [CrossRef]
- Fingerhut, M.A.; Nelson, D.I.; Driscoll, T.; Concha-Barrientos, M.A.; Steenland, K.Y.; Punnett, L.A.; Prüss-Ustün, A.; Leigh, J.; Corvalan, C.; Eijkemans, G.; et al. The contribution of occupational risks to the global burden of disease: Summary and next steps. Med. Lav. 2006, 97, 313–321. [Google Scholar] [PubMed]
- Bouwman, H.; Sereda, B.; Meinhardt, H. Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa. Environ. Pollut. 2006, 144, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, J.O.; Mutshatshi, T.N.; Botha, B.; Agyei, N. DDT, DDE and DDD in human milk from South Africa. Bull. Environ. Contam. Toxicol. 2008, 81, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Cohn, B.A.; Cirillo, P.M.; Wolff, M.S.; Schwingl, P.J.; Cohen, R.D.; Sholtz, R.I.; Ferrara, A.; Christianson, R.E.; den Berg, B.J.; Siiteri, P.K. DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 2003, 361, 2205–2206. [Google Scholar] [CrossRef]
- Krstevska-Konstantinova, M.; Charlier, C.; Craen, M.; Du Caju, M.; Heinrichs, C.; De Beaufort, C.; Plomteux, G.; Bourguignon, J. Sexual precocity after immigration from developing countries to Belgium: Evidence of previous exposure to organochlorine pesticides. Apmis 2001, 109, S135–S143. [Google Scholar] [CrossRef] [Green Version]
- Kemf, E. GCO—Global Chemicals Outlook: Towards Sound Management of Chemicals; United Nations Environment Programme: Nairobi, Kenya, 2013. [Google Scholar]
- Geyer, H.J.; Rimkus, G.G.; Scheunert, I.; Kaune, A.; Schramm, K.-W.; Kettrup, A.; Zeeman, M.; Muir, D.C.; Hansen, L.G.; Mackay, D. Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In Bioaccumulation–New Aspects and Developments; Springer: Berlin, Germany, 2000; pp. 1–166. [Google Scholar]
- Scruggs, C.; Hunter, G.; Snyder, E.; Long, B.; Snyder, S. EDCs in wastewater: What’s the next step? Water Environ. Technol. 2005, 17, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Calafat, A.M.; Needham, L.L. Human exposures and body burdens of endocrine-disrupting chemicals. In Endocrine-Disrupting Chemicals; Springer: Berlin/Heidelberg, Germany, 2007; pp. 253–268. [Google Scholar]
- Porte, C.; Janer, G.; Lorusso, L.; Ortiz-Zarragoitia, M.; Cajaraville, M.; Fossi, M.; Canesi, L. Endocrine disruptors in marine organisms: Approaches and perspectives. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 143, 303–315. [Google Scholar] [CrossRef]
- Da Silva, A.P.A.; De Oliveira, C.D.L.; Quirino, A.M.S.; da Silva, F.D.M.; de Aquino Saraiva, R.D.; Silva-Cavalcanti, J.S. Endocrine Disruptors in Aquatic Environment: Effects and Consequences on the Biodiversity of Fish and Amphibian Species. Aquat. Sci. Technol. 2018, 6, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Escher, B.I.; Von Gunten, U. Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ. Sci. Technol. 2008, 42, 6333–6339. [Google Scholar] [CrossRef]
- Johnson, A.C.; Sumpter, J.P. Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ. Sci. Technol. 2001, 35, 4697–4703. [Google Scholar] [CrossRef]
- Sumpter, J.P.; Johnson, A.C. 10th Anniversary perspective: Reflections on endocrine disruption in the aquatic environment: From known knowns to unknown unknowns (and many things in between). J. Environ. Monit. 2008, 10, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Birkett, J. Endocrine Disrupters in Wastewater and Sludge Treatment Processes; CRC: Boston, MA, USA, 2003; pp. 35–58. [Google Scholar]
- Liu, Z.-H.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Gill, S.; Allen, S. Metal removal from wastewater using peat. Water Res. 2000, 34, 3907–3916. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Pérez, S.; Barceló, D. Fate and occurrence of X-ray contrast media in the environment. Anal. Bioanal. Chem. 2007, 387, 1235–1246. [Google Scholar] [CrossRef]
- Cheremisinoff, N.P. Handbook of Water and Wastewater Treatment Technologies; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- McCann, B. Disruptive influences. Water 2004, 21, 20–22. [Google Scholar]
- Lee, H.-B.; Peart, T.E.; Gris, G.; Chan, J. Endocrine-disrupting chemicals in industrial wastewater samples in Toronto, Ontario. Water Qual. Res. J. 2002, 37, 459–472. [Google Scholar] [CrossRef]
- Andersen, L.; Kinnberg, K.; Holbech, H.; Korsgaard, B.; Bjerregaard, P. Evaluation of a 40 day assay for testing endocrine disrupters: Effects of an anti-estrogen and an aromatase inhibitor on sex ratio and vitellogenin concentrations in juvenile zebrafish (Danio rerio). Fish Physiol. Biochem. 2004, 30, 257–266. [Google Scholar] [CrossRef]
- Giger, W.; Gabriel, F.L.; Jonkers, N.; Wettstein, F.E.; Kohler, H.-P.E. Environmental fate of phenolic endocrine disruptors: Field and laboratory studies. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 3941–3963. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-B.; Peart, T.E.; Svoboda, M.L. Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. J. Chromatogr. A 2005, 1094, 122–129. [Google Scholar] [CrossRef]
- Drewes, J.E.; Hemming, J.; Ladenburger, S.J.; Schauer, J.; Sonzogni, W. An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ. Res. 2005, 77, 12–23. [Google Scholar] [CrossRef]
- Auriol, M.; Filali-Meknassi, Y.; Tyagi, R.D.; Adams, C.D.; Surampalli, R.Y. Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem. 2006, 41, 525–539. [Google Scholar] [CrossRef]
- Chang, H.-S.; Choo, K.-H.; Lee, B.; Choi, S.-J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J. Hazard. Mater. 2009, 172, 1–12. [Google Scholar] [CrossRef]
- Esplugas, S.; Bila, D.M.; Krause, L.G.T.; Dezotti, M. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 2007, 149, 631–642. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, L.; Chang, A.C. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Sci. Total Environ. 2013, 442, 310–316. [Google Scholar] [CrossRef]
- Ternes, T.A.; Stumpf, M.; Mueller, J.; Haberer, K.; Wilken, R.-D.; Servos, M. Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci. Total Environ. 1999, 225, 81–90. [Google Scholar] [CrossRef]
- Körner, W.; Spengler, P.; Bolz, U.; Schuller, W.; Hanf, V.; Metzger, J.W. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 2. Biological analysis. Environ. Toxicol. Chem. 2001, 20, 2142–2151. [Google Scholar] [CrossRef]
- Menendez-Diaz, J.; Martín-Gullón, I. Types of Carbon Adsorbents and Their Production, in Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–47. [Google Scholar]
- Koh, Y.; Chiu, T.; Boobis, A.; Cartmell, E.; Scrimshaw, M.; Lester, J. Treatment and removal strategies for estrogens from wastewater. Environ. Technol. 2008, 29, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Ziels, R.M.; Lust, M.J.; Gough, H.L.; Strand, S.E.; Stensel, H.D. Influence of bioselector processes on 17α-ethinylestradiol biodegradation in activated sludge wastewater treatment systems. Environ. Sci. Technol. 2014, 48, 6160–6167. [Google Scholar] [CrossRef]
- Ekama, G.A. Recent developments in biological nutrient removal. Water SA 2015, 41, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.M.; Bina, B.; Ebrahim, K.; Yavari, Z.; Mohammadi, F. Biodegradation of natural and synthetic estrogens in moving bed bioreactor. Chin. J. Chem. Eng. 2018, 26, 393–399. [Google Scholar] [CrossRef]
- Raghavan, D.S.S.; Qiu, G.; Ting, Y.-P. Fate and removal of selected antibiotics in an osmotic membrane bioreactor. Chem. Eng. J. 2018, 334, 198–205. [Google Scholar] [CrossRef]
- Ivashechkin, P.; Corvini, P.; Fahrbach, M.; Hollender, J.; Konietzko, M.; Meesters, R.; Schröder, H.F.; Dohmann, M. Comparison of the elimination of endocrine disrupters in conventional wastewater treatment plants and membrane bioreactors. In 2nd IWA Leading-Edge on Water and Wastewater Treatment Technologies; IWA Publishing: London, UK, 2005; p. 211. [Google Scholar]
- Khanal, S.K.; Xie, B.; Thompson, M.L.; Sung, S.; Ong, S.-K.; Van Leeuwen, J. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ. Sci. Technol. 2006, 40, 6537–6546. [Google Scholar] [CrossRef]
- Holloway, R.W.; Regnery, J.; Nghiem, L.D.; Cath, T.Y. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. Environ. Sci. Technol. 2014, 48, 10859–10868. [Google Scholar] [CrossRef] [Green Version]
- Sahar, E.; Ernst, M.; Godehardt, M.; Hein, A.; Herr, J.; Kazner, C.; Melin, T.; Cikurel, H.; Aharoni, A.; Messalem, R. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: Conventional activated sludge followed by ultrafiltration versus membrane. Water Sci. Technol. 2011, 63, 733–740. [Google Scholar] [CrossRef]
- Basha, C.A.; Chithra, E.; Sripriyalakshmi, N. Electro-degradation and biological oxidation of non-biodegradable organic contaminants. Chem. Eng. J. 2009, 149, 25–34. [Google Scholar] [CrossRef]
- Carmen, Z.; Daniela, S. Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Blanco, J.; Torrades, F.; De la Varga, M.; García-Montaño, J. Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination 2012, 286, 394–399. [Google Scholar] [CrossRef]
- Von Sperling, M.; de Lemos Chernicharo, C.A. Biological Wastewater Treatment in Warm Climate Regions; IWA Publishing: London, UK, 2005; Volume 1. [Google Scholar]
- Tizaoui, C.; Fredj, S.B.; Monser, L. Polyamide-6 for the removal and recovery of the estrogenic endocrine disruptors estrone, 17β-estradiol, 17α-ethinylestradiol and the oxidation product 2-hydroxyestradiol in water. Chem. Eng. J. 2017, 328, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Paterakis, N.; Chiu, T.; Koh, Y.; Lester, J.; McAdam, E.; Scrimshaw, M.; Soares, A.; Cartmell, E. The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. J. Hazard. Mater. 2012, 199, 88–95. [Google Scholar] [CrossRef] [Green Version]
How Humans Are Exposed to EDCs | EDC Source | Examples of EDC |
---|---|---|
Consumption of contaminated water or food | Industrial wastewater or ground water | Polychlorinated biphenyls (PCBs), dioxins, perfluorinated compounds, Dichlorodiphenyltrichloroethane (DDT) |
Consumption of contaminated water or food | Discharge of chemicals from food or beverages | Bisphenol A (BPA), phthalates, chlorpyrifos, DDT |
Contact with skin or inhalation | Household furniture treated with flame retardants | Brominated flame retardant (BFR) |
Contact with skin and/or inhalation | Pesticides used in agriculture, homes, or for public disease | DDT, chlorpyrifos, vinclozolin, pyrethroids |
Application to skin | Vector control, certain cosmetics, and personal care products | Parabens, phthalates, insect repellents triclosan |
Biological transfer from mother’s milk | Maternal body burden due to past and or/current exposures | Several EDCs are found in breast milk |
Compound | Kinds of Method | Removal Efficacy |
---|---|---|
Polychlorinated biphenyls (PCB) | Biofiltration | 90% |
Activated sludge | 90% | |
Biofiltration/activated sludge | 99% | |
Nonylphenol (NP) | High loading/non-nitrifying | 37% |
Low loading/nitrifying | 77% | |
NP1EO ** | High loading/non-nitrifying | −3% degradation product produced |
Low loading/nitrifying | 31% | |
NP2EO ** | High loading/non-nitrifying | −5% produced as degradation product |
Low loading/nitrifying | 91% | |
17β-oestradiol/17α-Ethinylestradiol | Filtration—Sand/microfiltration | 70% |
Advanced treatment—Reverse osmosis | 95% | |
Organotins | Primary effluent | 73% |
Secondary effluent | 90% | |
Tertiary effluent | 98% |
Removal Method | Explanation |
---|---|
Activated Carbon Adsorption | Activated carbon cost-effectively removes hydrophobic organic compounds. Activated carbon is usually applied in one of two methods: (1) Powdered activated carbon (PAC) and (2) granular activated carbon (GAC). |
Ozonation | Ozone is the dominant oxidant. Ozonation removes trace elements: However, this method will not work efficiently in some circumstances. |
Advanced Oxidation Processes (AOPs) | AOPs have strong oxidants, degrade strong organic pollutants, and remove certain inorganic pollutants in wastewater. |
Reverse Osmosis (RO) | RO can remove EDCs based on compound magnitude and membrane properties. However, RO is a less appropriate option for wastewater treatments for drinking and riverine waters. |
Mesophilic | Thermophilic | |||
---|---|---|---|---|
Initial Sludge | Mixed Sludge | Initial Sludge | Mixed Sludge | |
Influent Sludges | ||||
TS (g L−1) | 51.1 ± 3.7 | 57.1 ± 4.3 | 39.5 ± 0.1 | 49.7 ± 0.1 |
VS (g L−1) | 36.5 ± 2.6 | 44.0 ± 3.0 | 29.2 ± 0.1 | 38.1 ± 0.1 |
VFA (mg acetic acid L−1) | 1314 ± 68 | 1592 ± 44 | 1168 ± 98 | 1470 ± 52 |
Estrone (E1) (μg kg−1 dw) | 158 ± 14 | 90 ± 21 | 64.3 ± 2.5 | 32.3 ± 2 |
17β-Oestradiol (E2) | 9 ± 1 | 6 ± 1 | 6 ± 3 | 3 ± 2 |
Estriol (E3) | 9 ± 1 | 8 ± 1 | 6 ± 1.5 | 5 ± 1 |
Estrone-3-sulfate (E1-3S) | 7.6 ± 1.5 | 7 ± 1.5 | 4 ± 1 | 4 ± 1 |
17α-Ethinyl oestradiol (EE2) | 18 ± 4 | 10 ± 2 | 9 ± 1 | 10 ± 2 |
4-Nonylphenol (NP) (mg kg−1 dw) | 0.3 ± 0.1 | 0.23 ± 0.1 | 0.23 ± 0.1 | 0.1 ± 0.1 |
Nonylphenoxy acetic acids (NP1–3EC) (mg kg−1 dw) | 26.5 ± 0.1 | 241.5 ± 0.1 | 0.1 ± 0.1 | 0.08 ± 0.1 |
Nonylphenol monoethoxylate and diethoxylate (NP1–2EO) (mg kg−1 dw) | 2.1 ± 0.5 | 1.7 ± 0.5 | 15 ± 0.1 | 90 ± 0.1 |
Nonylphenol polyethoxylates (NP3–12EO) (mg kg−1 dw) | 1.5 ± 0.4 | 0.7 ± 0.4 | 1.3 ± 0.25 | 0.7 ± 0.25 |
Operating Circumstances | ||||
T (°C) | 35 ± 0.2 | 35 ± 0.2 | 55 ± 0.2 | 55 ± 0.2 |
SRT (d) | 30 | 30 | 15 | 15 |
OLR (kg VS m−3 d−1) | 1.3 ± 0.1 | 1.5 ± 0.1 | 1.9 ± 0.0 | 2.5 ± 0.0 |
TS (g L−1) | 26.7 ± 2.3 | 38.5 ± 1.3 | 22.7 ± 1.8 | 33.9 ± 1.3 |
VS (g L−1) | 19.5 ± 1.6 | 23.9 ± 2.0 | 11.5 ± 4.5 | 22.0 ± 2.2 |
pH | 7.1 ± 0.1 | 7.5 ± 0.1 | 7.2 ± 0.0 | 7.6 ± 0.1 |
ORP (mV) | −320.8 ± 12.8 | −380.6 ± 29.8 | −411.6 ± 36.9 | −419.0 ± 34.9 |
VFA (mg acetic acid L−1) | 176.4 ± 7.3 | 132.9 ± 17.3 | 1098.5 ± 189.6 | 829.3 ± 145.9 |
Total alkalinity (mg L−1) | 2399 ± 37 | 5362 ± 63 | 4000 ± 453 | 4770 ± 85 |
Biogas | ||||
Daily production (l d−1) | 0.8 ± 0.0 | 0.8 ± 0.1 | 1.0 ± 0.1 | 1.6 ± 0.1 |
GRP (m3 m−3 d−1) | 0.51 ± 0.0 | 0.52 ± 0.0 | 0.67 ± 0.0 | 1.08 ± 0.0 |
SGP (m3 CH4 kg−1 VSremoved) | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.4 ± 0.1 | 0.7 ± 0.1 |
Biogas yield (m3 kg−1 VSremoved) | 0.95 ± 0.2 | 0.80 ± 0.1 | 0.60 ± 0.1 | 1.02 ± 0.1 |
Elimination efficiencies (%) | ||||
VS | 53.5 ± 6.9 | 40.1 ± 2.1 | 43.2 ± 3.0 | 32.4 ± 1.0 |
TS | 47.3 ± 8.5 | 33.7 ± 4.6 | 37.0 ± 4.4 | 29.8 ± 2.6 |
g VS removed d−1 | 1.07 ± 0.1 | 0.98 ± 0.1 | 2.24 ± 0.2 | 1.84 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadupudi, C.K.; Rice, L.; Xiao, L.; Kantamaneni, K. Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review. Sci 2021, 3, 11. https://doi.org/10.3390/sci3010011
Gadupudi CK, Rice L, Xiao L, Kantamaneni K. Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review. Sci. 2021; 3(1):11. https://doi.org/10.3390/sci3010011
Chicago/Turabian StyleGadupudi, China K., Louis Rice, Libin Xiao, and Komali Kantamaneni. 2021. "Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review" Sci 3, no. 1: 11. https://doi.org/10.3390/sci3010011
APA StyleGadupudi, C. K., Rice, L., Xiao, L., & Kantamaneni, K. (2021). Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review. Sci, 3(1), 11. https://doi.org/10.3390/sci3010011