Lasers for Satellite Uplinks and Downlinks
Abstract
:1. Introduction
2. Materials and Methods
2.1. History of Laser Employment as Link Source
“The registered history of laser technologies for space application starts with the first laser echoes reflected off the Moon in 1962. Since then, photonic technologies have become very prominent in most technical development. Their presence has also dramatically increased in space applications thanks to the many advantages they present over traditional equivalent devices, such as the immunity against electromagnetic interference, as well as their efficiency and low power consumption. Lasers are one of the key components in most of those applications.”
2.1.1. Prior to the Twenty-First Century
2.1.2. Early Twenty-First Century
“The Lunar Laser Communication Demonstration (LLCD) was conducted on NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite that launched in late 2013 [41]. The LLCD payload demonstrated optical communication in the 1.5 μm band utilizing pulse position modulation (PPM) with 16 slots (16-PPM) to downlink data from the moon to a receiver on Earth at 622 Mbps. The uplink from the optical ground terminal on Earth utilized 4-PPM to uplink data at 20 Mbps to LLCD [40]. LADEE [40,41] was a small satellite that weighed 383 kg at launch and the entire spacecraft consumed 295 W of power during its mission”[39]
2.1.3. Satellite Laser Range Finding
“The repeatability of SLR station coordinates based solely on SLR observations to S3A/B is at the level of 8–16 mm by means of interquartile ranges even without network constraining in 7-day solutions. The combined S3A/B and LAGEOS solutions show a consistency of estimated station coordinates better than 13 mm, geocenter coordinates with a RMS of 6 mm, pole coordinates with a RMS of 0.19 mas and Length-of-day with a RMS of 0.07 ms/day when referred to the IERS-14-C04 series.”[9]
“Early geode-tic satellites were Starlette, launched in 1975 by Cen-tre National d’Etudes Spatiales (CNES), and LAGEOSin 1976 by the National Aeronautics and Space Ad-ministration (NASA). Recent geodetic satellites include LARES, launched in 2012, and LARES-2 under development, both by the Italian space agency (ASI). Today a complex of these ‘geodetic satellites’ from low to high altitude Earth orbits supports many space geodesy requirements. This manuscript will discuss the evolution of the geodetic satellites from the early days, through current programs and out to future needs as we approach our goal for millimeter accuracy.”[9]
2.1.4. Demonstrations on Fast-Moving Platforms
3. Results
3.1. Comparisons of Radio Frequency and Optical Systems
3.2. Technical Challenges of Employing Lasers versus Radio Frequency Communications
3.2.1. Beam Divergence, Vibration, and Jitter
“For example, a typical Ka-Band signal from Mars spreads out so much that the diameter of the energy when it reaches Earth is larger than Earth’s diameter. A typical optical signal, however, will only spread over the equivalent of a small portion of the United States; thus, there is less energy wasted.”
3.2.2. Acquisition, Tracking, and Pointing
Bifocal Relay Mirror Spacecraft
3.2.3. Atmospheric Impacts
Attenuation in Fog
Attenuation in Rain
4. Discussion
4.1. Advantages—Throughput, Power, Information Protection
“Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometers, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.”
4.2. Disadvantages—Acquisition, Tracking, and Pointing; the Atmosphere
4.3. Modifying Satellite ICDS and KPPs for Laser Communications
4.3.1. Key Performance Parameter (KPP) #1: Adaptive Optics
4.3.2. Key Performance Parameter (KPP) #2: Acquisition, Tracking, and Pointing
4.3.3. Key Performance Parameter (KPP) #3: The Laser Source Parameters
4.3.4. Key Performance Parameter (KPP) #1: The Transmitter and Telescope
4.4. Civil and Commercial Sector Adoption
“Optical communication is becoming more prevalent in orbit due to the need for increased data throughput. Nanosatellites, which are satellites that typically weigh less than 10 kg, are also becoming more common due to lower launch costs that enable the rapid testing of technology in a space environment. Nanosatellites are cheaper to launch than their larger counterparts and may be a viable option for communicating beyond Earth’s orbit, but have strict Size, Weight, and Power requirements. The Miniature Optical Communication Transceiver (MOCT) is a compact optical transceiver designed to provide modest data rates to size, weight, and power constrained platforms, like nanosatellites. This manuscript will cover the optical amplifier characterization and simulated performance of the MOCT amplifier design that produces 1 kW peak power pulses and closes three optical links which include Low Earth Orbit (LEO) to Earth, LEO to LEO, and Moon to Earth. Additionally, a benchtop version of the amplifier design was constructed and was able to produce amplified pulses with 1.37 W peak power, including a 35.7% transmit optics loss, at a pump power of 500 mW. Finally, the modulator, seed laser, amplifier, receiver, and time-to-digital converter were all used together to measure the Bit Error Ratio (BER), which was 0.00257 for a received optical peak power of 176 nW.”[138]
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, J.J. Space Warfare: Strategy. In Principles and Policy; Routledge: New York, NY, USA, 2006. [Google Scholar]
- McKinney, M.M. Transformational Satellite (TSAT) Communications Systems: Falling Short on Delivering Advanced Capabilities and Bandwidth to Ground-Based Users Air University Press, Maxwell Air Force Base. 2007. Available online: https://www.semanticscholar.org/paper/Transformational-Satellite-(TSAT)-Communications-on-McKinney/9b46a7134f56c1605ed9aed842ed396b0453084b (accessed on 4 June 2020).
- Baird, D. NASA Laser Communication Payload Undergoing Integration and Testing. Available online: https://www.nasa.gov/feature/goddard/2017/nasa-laser-communication-payload-undergoing-integration-and-testing (accessed on 13 August 2019).
- Guilhot, D.; Ribes-Pleguezuelo, P. Laser Technology in Photonic Applications for Space. Instruments 2019, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Ribes-Pleguezuelo, P.; Guilhot, D.; Gilaberte Basset, M.; Beckert, E.; Eberhardt, R.; Tünnermann, A. Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process. Instruments 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A. Earthlight, Muller (UK)/Ballantine Books (US). 1955. Available online: https://www.goodreads.com/book/show/1705748.Earthlight (accessed on 4 June 2020).
- Kazemi, A.A.; Panahi, A. Space-Based Laser Systems for Inter-Satellite Communications. In Proceedings of the Photonic Applications for Aerospace, Transportation, and Harsh Environment III, Baltimore, MA, USA, 10 May 2012; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Wilson, K.E. An Overview of the GOLD Experiment Between the ETS-VI Satellite and the Table Mountain Facility, TDA Progress Report. Available online: https://ipnpr.jpl.nasa.gov/progress_report/42-124/124I.pdf (accessed on 8 January 2020).
- Strugarek, D.; Sośnica, K.; Arnold, D.; Jäggi, A.; Zajdel, R.; Bury, G.; Drożdżewski, M. Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites. Remote Sens. 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E.; Sośnica, K.; et al. Laser geodetic satellites: A high accuracy scientific tool. J. Geod. 2019, 93, 2181–2194. [Google Scholar] [CrossRef]
- Drinkwater, M.R.; Haagmans, R.; Muzi, D.; Popescu, A.; Floberghagen, R.; Kern, M.; Fehringer, M. The GOCE gravity mission: ESA’s first core explorer. In Proceedings of the 3rd International GOCE User Workshop, Frascati, Italy, 6–8 November 2006; pp. 1–3, ISBN 92-9092-938-3. [Google Scholar]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Reigber, C.; Lühr, H.; Schwintzer, P. Status of the CHAMP Mission. In Towards an Integrated Global Geodetic Observing System (IGGOS), (International Association of Geodesy Symposia, 120); Rummel, R., Drewes, H., Bosch, W., Hornik, H., Eds.; Springer: Berlin, Germany, 1998; pp. 63–65. [Google Scholar]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An Earth Observation Mission investigating Geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Buckreuss, S.; Balzer, W.; Muhlbauer, P.; Werninghaus, R.; Pitz, W. The terraSAR-X satellite project. In Proceedings of the IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 5, pp. 3096–3098. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Lambin, J.; Morrow, R.; Fu, L.L.; Willis, J.K.; Bonekamp, H.; Lillibridge, J.; Perbos, J.; Zaouche, G.; Vaze, P.; Bannoura, W.; et al. The OSTM/Jason-2 Mission. Mar. Geod. 2010, 33, 4–25. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Bao, L.; Gao, P.; Peng, H.; Jia, Y.; Shum, C.K.; Lin, M.; Guo, Q. First accuracy assessment of the HY-2A altimeter sea surface height observations: Cross-calibration results. Adv. Space Res. 2015, 55, 90–105. [Google Scholar] [CrossRef]
- Scharroo, R.; Bonekamp, H.; Ponsard, C.; Parisot, F.; Von Engeln, A.; Tahtadjiev, M.; De Vriendt, K.; Montagner, F. Jason continuity of services: Continuing the Jason altimeter data records as Copernicus Sentinel-6. Ocean Sci. 2016, 12, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.; Montenbruck, O.; Hackel, S.; Sośnica, K. Satellite laser ranging to low Earth orbiters: Orbit and network validation. J. Geod. 2018, 93, 2315–2334. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, M.; Degnan, J.; Bosworth, J. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Hackel, S.; Gisinger, C.; Balss, U.; Wermuth, M.; Montenbruck, O. Long-Term Validation of TerraSAR-X and TanDEM-X Orbit Solutions with Laser and Radar Measurements. Remote Sens. 2018, 10, 762. [Google Scholar] [CrossRef] [Green Version]
- Montenbruck, O.; Hackel, S.; van den Ijssel, J.; Arnold, D. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut. 2018, 22, 79. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Shen, Y.; Liu, X.; Sun, Y.; Kong, Q. Estimation of SLR station coordinates by means of SLR measurements to kinematic orbit of LEO satellites. Earth Planets Space 2018, 70, 201. [Google Scholar] [CrossRef] [Green Version]
- Zelensky, N.P.; Lemoine, F.G.; Ziebart, M.; Sibthorpe, A.; Beckley, B.D.; Klosko, S.M.; Chinn, D.S.; Rowlands, D.D.; Luthcke, S.B.; Pavlis, D.E.; et al. DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv. Space Res. 2010, 46, 1541–1558. [Google Scholar] [CrossRef]
- Couhert, A.; Mercier, F.; Moyard, J.; Biancale, R. Systematic Error Mitigation in DORIS-Derived Geocenter Motion. J. Geophys. Res. Solid Earth 2018, 123, 10142–10161. [Google Scholar] [CrossRef] [Green Version]
- Švehla, D.; Rothacher, M. Kinematic Orbit Determination of LEOs Based on Zero or Double-difference Algorithms Using Simulated and Real SST GPS Data. In Vistas for Geodesy in the New Millennium; Ádám, J., Schwarz, K.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 322–328. [Google Scholar]
- Schutz, B.E.; Tapley, B.D.; Abusali, P.A.M.; Rim, H.J. Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophys. Res. Lett. 1994, 21, 2179–2182. [Google Scholar] [CrossRef]
- Wu, S.C.; Yunck, T.P.; Thorton, C.L. Reduced-dynamic technique for precise orbit determination of low earth satellites. J. Guid. Control Dyn. 1991, 14, 24–30. [Google Scholar] [CrossRef]
- Hackel, S.; Montenbruck, O.; Steigenberger, P.; Balss, U.; Gisinger, C.; Eineder, M. Model improvements and validation of TerraSAR-X precise orbit determination. J. Geod. 2017, 91, 547–562. [Google Scholar] [CrossRef]
- Jäggi, A.; Hugentobler, U.; Beutler, G. Pseudo-Stochastic Orbit Modeling Techniques for Low-Earth Orbiters. J. Geod. 2006, 80, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Peter, H.; Calero, E.J.; Berzosa, J.; Gallardo, L.J.; Féménias, P. Sentinel-3A: Validation of Orbit Products at the Copernicus POD Service. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–8. [Google Scholar]
- Toyoshima, M.; Yamakawa, S.; Yamawaki, T.; Arai, K.; Garcia-Talavera, M.R.; Alonso, A.; Sodnik, Z.; Demelenne, B. Long-Term Statistics of Laser Beam Propagation in an Optical Ground-to-Geostationary Satellite Communications Link. IEEE Trans. Antennas Propag. 2005, 53, 842–850. [Google Scholar] [CrossRef]
- Free Space Laser Communications; EOP 695 Lecture: Dayton, OH, USA, 2019.
- MEverett, M.; Leuer, J.P.; Whelan, D.A.; Lambert, S.G. Laser Communications in Super-Geosynchronous Earth Orbi. U.S. Patent 10,313,010 B2, 4 June 2019. [Google Scholar]
- Toyoshima, M. Trends in Satellite Communications and the Role of Optical Free-Space Communications [Invited]. J. Opt. Net. 2005, 4, 300–311. [Google Scholar] [CrossRef]
- Cornwell, D.M. NASA’s Optical Communications Program for 2015 and Beyond. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVII, San Francisco, CA, USA, 16 March 2015; p. 93540E. [Google Scholar]
- Barnwell, N.; Ritz, T.; Parry, S.; Clark, M.; Serra, P.; Conklin, J.W. The Miniature Optical Communication Transceiver—A Compact, Power-Efficient Lasercom System for Deep Space Nanosatellites. Aerospace 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Lunar Laser Communication Demonstration. Available online: http://spaceflight101.com/ladee/lunar-laser-communication-demonstration/ (accessed on 9 July 2019).
- LADEE (Lunar Atmosphere and Dust Environment Explorer). Available online: https://earth.esa.int/web/eoportal/satellite-missions/l/ladee (accessed on 16 February 2018).
- NASA. LCRD: LASER Communications Relay Demonstration. October 2018. Available online: https://lcrd.gsfc.nasa.gov (accessed on 6 March 2020).
- Cornwell, D. Space-Based Laser Communications Break Threshold. Opt. Photon. News 2016, 27, 24–31. [Google Scholar] [CrossRef]
- NASA Goddard Spaceflight Center FS-2013-5-026-GSFC. Lunar Laser Communication Demonstration NASA’s First Space Laser Communication System Demonstration. Goddard Space Flight Center, Code 450.2, Greenbelt, MD 20771. Available online: https://www.nasa.gov/sites/default/files/llcdfactsheet.final_.web_.pdf (accessed on 6 March 2020).
- Cornwell, D.M. Overview and results of the Lunar Laser Communication Demonstration. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 6 March 2014; Volume 8971, p. 8971S. [Google Scholar]
- Dunbar, B. Laser Communications Relay Demonstration (LCRD) Overview. 24 October 2018. Available online: https://www.nasa.gov/mission_pages/tdm/lcrd/overview.html (accessed on 6 March 2020).
- NASA-LCRD: 2019. 8 May 2019. Available online: https://www.nasa.gov/directorates/heo/scan/opticalcommunications/lcrd (accessed on 6 March 2020).
- eoPortal-LCRD (Laser Communications Relay Demonstration) Mission. Available online: https://eoportal.org/web/eoportal/satellite-missions/content/-/article/lcrd (accessed on 6 March 2020).
- Sheldon, J. German Space Innovation: DLR and the University of Stuttgart Test Laser Communications for Satellite Imagery. 9 April 2019. Available online: https://spacewatch.global/2019/04/german-space-innovation-dlr-and-the-university-of-stuttgart-test-laser-communications-for-satellite-imagery/ (accessed on 6 March 2020).
- Moll, F.; Horwath, J.; Shrestha, A.; Brechtelsbauer, M.; Fuchs, C.; Martin-Navajas, L.A.; Diaz-Gonzalez, D. Demonstration of High-Rate Laser Communications from a Fast Airborne Platform. IEEE J. Sel. Area. Commmun. 2015, 9, 1985–1995. [Google Scholar] [CrossRef]
- Panahi, A.; Kazemi, A.A. Optical Laser Cross-Link in Space-Based Systems Used for Satellite Communications. In Proceedings of the Proceedings Volume 8368, Photonic Applications for Aerospace, Transportation, and Harsh Environment III, Orlando, FL, USA, 20 April 2010. [Google Scholar]
- Moradiya, M.A. The Use of Lasers for Satellite Communication. 30 October 2018. Available online: https://www.azooptics.com/Article.aspx?ArticleID=1457 (accessed on 6 March 2020).
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Collins, M.; Boroson, D.; Lesh, J.; Biswas, A.; Orr, R.; Schuchman, L.; Sands, O. RF and Optical Communications: A Comparison of High Data Rate Returns from Deep Space in the 2020 Timeframe. In Proceedings of the 12th Ka and Broadband Communications Conference cosponsored by Alcatel Alenia Space, CPI Satcom Division, ESA, Finmeccanica, Galileo Industries, MARS, Space Engineering, and Telespazio, Naples, Italy, 27–29 September 2006. [Google Scholar]
- Fingas, M.; Brown, C. Oil Spill Remote Sensing. In Oil Spill Science and Technology, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2017. [Google Scholar]
- Achour, M. Simulating atmospheric free-space optical propagation: Rainfall attenuation. Proc. SPIE Free Space Laser Comm. Technol. XIV 2002, 4635, 192–201. [Google Scholar]
- Sentinel-3. Wikipedia. Available online: https://en.wikipedia.org/wiki/Sentinel-3 (accessed on 6 March 2020).
- Everett, M.M.; Leuer, J.P.; Whelan, D.A.; Lambert, S.G. Laser Communications Following an Atmospheric Event. Boeing Company. U.S. Patent 10,009,101, 17 May 2015. [Google Scholar]
- Aviv, D. Laser Space Communications; Artech House: Norwood, MA, USA, 2006; pp. 165–188. Available online: https://media.taricorp.net/spdf/Laser%20Space%20Communications%20-%20David%20G.%20Aviv.pdf (accessed on 4 June 2020).
- Watkins, R.; Agrawal, B.; Shin, Y.; Chen, C. Jitter Control of Space and Airborne Laser Beams. In Proceedings of the 22nd AIAA International Communications Satellite Systems Conference, Monterey, CA, USA, 9–12 May 2004. [Google Scholar]
- Sands, T.; Kim, J.; Agrawal, B. 2H Singularity-Free Momentum Generation with Non-Redundant Single Gimbaled Control Moment Gyroscopes. In Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA, 13–15 December 2006. [Google Scholar]
- Kim, J.; Sands, T.; Agrawal, B. Acquisition, Tracking, and Pointing Technology Development for Bifocal Relay Mirror Spacecraft. In Proceedings of the Defense and Security Symposium, Orlando, FL, USA, 7 May 2007; Volume 6569. [Google Scholar]
- Sands, T. Fine Pointing of Military Spacecraft. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2007. [Google Scholar]
- Sands, T. Control Moment Gyroscope Singularity Reduction via Decoupled Control. In Proceedings of the IEEE Southeastcon 2009, Atlanta, GA, USA, 5–8 March 2009. [Google Scholar]
- Sands, T.; Kim, J.; Agrawal, B. Nonredundant Single-Gimbaled Control Moment Gyroscopes. J. Guid. Control Dyn. 2012, 35, 578. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, S.; Sands, T. Simulation of rigid body damage tolerance and adaptive controls. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; pp. 1–16. [Google Scholar]
- Sands, T. Experiments in Control of Rotational Mechanics. Int. J. Autom. Control Intell. Syst. 2016, 2, 9–22. [Google Scholar]
- Agrawal, B.; Kim, J.; Sands, T. Method and Apparatus for Singularity Avoidance for Control Moment Gyroscope (CMG) Systems without Using Null Motion. U.S. Patent 9567112 B1, 14 February 2017. [Google Scholar]
- Sands, T.; Lu, D.; Chu, J.; Cheng, B. Developments in angular momentum exchange. Int. J. Aero. Sci. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Baker, K.; Culton, E.; TenEyck, J.; Lewis, Z.; Sands, T. Contradictory postulates of singularity. Mech. Eng. Res. 2019, 9, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Sands, T.; Kim, J.; Agrawal, B. Singularity Penetration with Unit Delay (SPUD). Mathematics 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Lewis, Z.; Ten Eyck, J.; Baker, K.; Culton, E.; Lang, J.; Sands, T. Non-Symmetric Gyroscope Skewed Pyramids. Aerospace 2019, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Sands, T.; Kim, J.J.; Agrawal, B.N. Spacecraft fine tracking pointing using adaptive control. In Proceedings of the 58th International Astronautical Congress, Hyderabad, India, 24–28 September 2007. [Google Scholar]
- Nakatani, S.; Sands, T. Autonomous Damage Recovery in Space. Int. J. Autom. Control Intell. Syst. 2016, 2, 23–36. [Google Scholar]
- Sands, T.; Lorenz, R. Physics-Based Automated Control of Spacecraft. In Proceedings of the AIAA Space Conference & Exposition, Pasadena, CA, USA, 14–17 September 2009. [Google Scholar]
- Cooper, M.; Heidlauf, P.; Sands, T. Controlling Chaos—Forced van der pol equation. Mathematics 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Sands, T.; Kim, J.J.; Agrawal, B. Improved Hamiltonian adaptive control of spacecraft. In Proceedings of the Aerospace Conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–10. [Google Scholar]
- Smeresky, B.; Rizzo, A.; Sands, T. Kinematics in the Information Age. Mathematics 2018, 6, 148. [Google Scholar] [CrossRef] [Green Version]
- Sands, T.; Kim, J.J.; Agrawal, B. Spacecraft Adaptive Control Evaluation. In Proceedings of the Infotech@ Aerospace, Garden Grove, CA, USA, 19–21 June 2012. [Google Scholar]
- Lobo, K.; Lang, J.; Starks, A.; Sands, T. Analysis of Deterministic Artificial Intelligence for Inertia Modifications and Orbital Disturbance. Int. J. Con. Sci. Eng. 2018, 8, 53. [Google Scholar]
- Sands, T. Physics-Based Control Methods. In Advances in Spacecraft Systems and Orbit Determination; InTech Publishers: London, UK, 2012; pp. 29–54. [Google Scholar]
- Nakatani, S.; Sands, T. Battle-damage tolerant automatic controls. Electr. Electron. Eng. 2018, 8, 10. [Google Scholar]
- Sands, T. Improved Magnetic Levitation via Online Disturbance Decoupling. Phys. J. 2015, 1, 272–280. [Google Scholar]
- Sands, T. Phase Lag Elimination at All Frequencies for Full State Estimation of Rigid body Attitude. Phys. J. 2017, 3, 1–12. [Google Scholar]
- Baker, K.; Cooper, M.; Heidlauf, P.; Sands, T. Autonomous trajectory generation for deterministic artificial intelligence. Electr. Electron. Eng. 2018, 8, 59. [Google Scholar]
- Sands, T.; Kenny, T. Experimental Piezoelectric System Identification. J. Mech. Eng. Autom. 2017, 7, 179. [Google Scholar]
- Sands, T. Nonlinear-Adaptive Mathematical System Identification. Computation 2017, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Smeresky, B.; Rizzo, A.; Sands, T. Optimal learning and self-awareness. Algorithms 2020, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Sands, T.; Armani, C. Analysis, Correlation, and Estimation for Control of Material Properties. J. Mech. Eng. Autom. 2018, 8, 7. [Google Scholar]
- Sands, T. Experimental Sensor Characterization. J. Space Explor. 2018, 7, 140. [Google Scholar]
- Sands, T. Space System Identification Algorithms. J. Space Explor. 2018, 6, 138. [Google Scholar]
- National Security Space Institute (NSSI). Electromagnetic Spectrum. Available online: http://educationalaids.nssi.space/ (accessed on 6 March 2020).
- Kaushal, H.; Kaddoum, G. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Commun. Surv. Tutor. 2016, 19, 57–96. [Google Scholar] [CrossRef] [Green Version]
- Mabrouk, W.; Abdullah, M. FSO Link Mathematical Model. In Recent Trends in Information and Communication Technology: Proceedings of the 2nd International Conference of Reliable Information and Communication Technology (IRICT 2017); Saeed, F., Gazem, N., Patnaik, S., Balaid, S., Mohammed, F., Eds.; Springer: Johor, Malaysia, 2017. [Google Scholar]
- Suriza, A.; Rafiqul, I.; Wajdi, K.; Naji, A. Proposed parameters of specific rain attenuation prediction for free space optics link operating in tropical region. J. Atmos. Solar-Terr. Phys. 2013, 94, 93–99. [Google Scholar] [CrossRef]
- Truyens, N. Laser Satellite Communications: Sending Data Using Light Signals. 18 July 2019. Available online: https://www.tno.nl/en/focus-areas/industry/roadmaps/space-scientific-instrumentation/laser-satellite-communication-sending-data-using-light-signals/ (accessed on 6 March 2020).
- Hall, D.; Sands, T. Quantum Cryptography for Nuclear Command and Control. Comp. Inf. Sci. 2020, 13, 72. [Google Scholar] [CrossRef] [Green Version]
- Simon Pegg: Scotty, “Star Trek (2009),” IMDb.com, Inc. Available online: https://www.imdb.com/title/tt0796366/characters/nm0670408 (accessed on 6 March 2020).
- Thangevalautham, J.; Guo, X. Low-Cost, Long-Distance, High-Bandwidth Laser Communication System for Small Mobile Devices and Spacecraft. U.S. Patent 9,991.957 B2, 5 June 2018. [Google Scholar]
- Chui, G. A Potential New and Easy Way to Make Attosecond Laser Pulses: Focus a Laser on Ordinary Glass. 28 September 2017. Available online: https://www6.slac.stanford.edu/news/2017-09-28-potential-new-and-easy-way-make-attosecond-laser-pulses-focus-laser-ordinary-glass (accessed on 6 March 2020).
- SCYLIGHT. 3 October 2018. Available online: https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ScyLight (accessed on 6 March 2020).
- Hyde, G.; Edelson, B.I. Laser Satellite Communications: Current Status and Directions. Space Policy 1997, 13, 47–54. [Google Scholar] [CrossRef]
- Nadeem, F.; Javornik, T.; Leitgeb, E.; Kvicera, V.; Kandus, G. Continental fog attenuation empirical relationship from measured visibility data. J. Radio Eng. 2010, 19, 596–600. [Google Scholar]
- Stadler, B.; Duchak, G. TeraHertz Operational Reachback (THOR) A Mobile Free Space Optical Network Technology Program. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 6–13 March 2004. [Google Scholar]
- Sheldon, J. Europe’s SpaceDataHighway EDRS-C Ready to Launch in July 2019. 9 May 2019. Available online: https://spacewatch.global/2019/05/europes-spacedatahighway-edrs-c-ready-to-launch-in-july-2019/ (accessed on 6 March 2020).
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Chen, W.; Sun, J.; Hou, X.; et al. 5.12 Gbps optical communication link between low-earth orbiting satellite and ground station. In Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 14–16 November 2017; pp. 260–263. [Google Scholar]
- Hemmati, H. Deep Space Optical Communications; Deep Space Communications and Navigation Systems Center of Excellence, Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2005. [Google Scholar]
- Li, J.; Hylton, A.; Budinger, J.; Nappier, J.; Downey, J.; Raible, D. Dual-pulse pulse position modulation (DPPM) for deep-space optical communications: Performance and practicality analysis. In Proceedings of the 2012 International Conference on Wireless Communications and Signal Processing (WCSP), Huangshan, China, 25–27 October 2012; pp. 1–7. [Google Scholar]
- Rev, C. CSAC SA.45s Datasheet; Microsemi Corporation: Aliso Viejo, CA, USA, 2018; Available online: https://www.microsemi.com/document-portal/doc_download/133305-sa-45s-csac-datasheet (accessed on 6 March 2020).
- nLIGHT, Inc. Liekki Er80-8/125—Large Mode Area Erbium Doped Fiber; nLIGHT, Inc.: Vancouver, WA, USA, 2017. [Google Scholar]
- Fletcher, K. Sentinel 3: ESA’s Global Land and Ocean Mission for GMES Operational Services; ESA SP-1322/3; ESA Communications: Noordwijk, The Netherlands, 2012. [Google Scholar]
- Fernández, J.; Fernández, C.; Féménias, P.; Peter, H. The Copernicus Sentinel-3 mission. In Proceedings of the 2016 ILRS Workshop, Potsdam, Germany, 9–14 October 2016; pp. 1–4. [Google Scholar]
- GMV Consortium. Copernicus POD Regular Service Review Jun-Sep 2018. Tech. Rep. 2018. Available online: https://sentinels.copernicus.eu/documents/247904/3372484/Copernicus-POD-Regular-Service-Review-Jun-Sep-2018.pdf (accessed on 6 March 2020).
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2. User Manual; University of Bern, Bern Open Publishing: Bern, Switzerland, 2015. [Google Scholar]
- Dach, R.; Schaer, S.; Arnold, D.; Prange, L.; Sidorov, D.; Stebler, P.; Villiger, A.; Jaeggi, A. CODE Ultra-Rapid Product Series for the IGS; Tech. Rep.; Astronomical Institute, University of Bern: Bern, Switzerland, 2018. [Google Scholar]
- Jäggi, A.; Dach, R.; Montenbruck, O.; Hugentobler, U.; Bock, H.; Beutler, G. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J. Geod. 2009, 83, 1145. [Google Scholar] [CrossRef] [Green Version]
- Luceri, V.; Pavlis, E.C.; Pace, B.; Kuźmicz-Cieślak, M.; König, M.; Bianco, G.; Evans, K. The ILRS Contribution to the Development of the ITRF2014. In Proceedings of the 26th IUGG General Assembly, Prague, Czech Republic, 22 June–2 July 2015. [Google Scholar]
- Bizouard, C.; Lambert, S.; Gattano, C.; Becker, O.; Richard, J.Y. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geod. 2018, 93, 621–633. [Google Scholar] [CrossRef]
- Sośnica, K.; Bury, G.; Zajdel, R.; Strugarek, D.; Drożdżewski, M.; Kazmierski, K. Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS. Earth Planets Space 2019, 71, 20. [Google Scholar] [CrossRef] [Green Version]
- Mendes, V.B.; Pavlis, E.C. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Rebischung, P.; Schmid, R. IGS14/igs14.atx: A new Framework for the IGS Products. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2016. [Google Scholar]
- Strugarek, D.; Sośnica, K.; Jäggi, A. Characteristics of GOCE orbits based on Satellite Laser Ranging. Adv. Space Res. 2019, 63, 417. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6131. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P.; Bloßfeld, M.; Fritsche, M. Reducing the draconitic errors in GNSS geodetic products. J. Geod. 2014, 88, 559–574. [Google Scholar] [CrossRef]
- Lutz, S.; Meindl, M.; Steigenberger, P.; Beutler, G.; Sośnica, K.; Schaer, S.; Dach, R.; Arnold, D.; Thaller, D.; Jäggi, A. Impact of the arc length on GNSS analysis results. J. Geod. 2016, 90, 365–378. [Google Scholar] [CrossRef]
- Cheng, M.; Ries, J. The unexpected signal in GRACE estimates of C20. J. Geod. 2017, 91, 897–914. [Google Scholar] [CrossRef]
- Jäggi, A.; Bock, H.; Prange, L.; Meyer, U.; Beutler, G. GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Adv. Space Res. 2011, 47, 1020. [Google Scholar] [CrossRef]
- Sośnica, K.; Bury, G.; Zajdel, R. Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame. Geophys. Res. Lett. 2018, 45, 2339. [Google Scholar] [CrossRef]
- Štěpánek, P.; Rodriguez-Solano, C.J.; Hugentobler, U.; Filler, V. Impact of orbit modeling on DORIS station position and Earth rotation estimates. Adv. Space Res. 2014, 53, 1058. [Google Scholar] [CrossRef]
- Moreaux, G.; Capdeville, H.; Kuzin, S.; Otten, M.; Štěpánek, P.; Willis, P.; Ferrage, P. The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame. Adv. Space Res. 2016, 58, 2479. [Google Scholar] [CrossRef]
- Štěpánek, P.; Hugentobler, U.; Buday, M.; Filler, V. Estimation of the Length of Day (LOD) from DORIS observations. Adv. Space Res. 2018, 62, 370–382. [Google Scholar] [CrossRef]
- SWEEPER Demonstrates Wide-Angle Optical Phased Array Technology. 21 May 2015. Available online: https://www.darpa.mil/news-events/2015-05-21 (accessed on 6 March 2020).
- Krolik, J. 100 Gb/s RF Backbone (100G). 21 July 2019. Available online: https://www.darpa.mil/program/100-gb-s-rf-backbone (accessed on 6 March 2020).
- Moll, F. Free-Space Laser System for Secure Air-to-Ground Quantum Communications. 9 December 2013. Available online: http://spie.org/news/5189-free-space-laser-system-for-secure-air-to-ground-quantum-communications?SSO=1 (accessed on 6 March 2020).
- Jameson, H. Tesat Delivers Small Laser Communication Transmitter to Undisclosed Customer. 12 August 2019. Available online: https://spacewatch.global/2019/08/tesat-delivers-the-first-smallest-laser-communication-transmitter-worldwide/ (accessed on 6 March 2020).
- Cahoy, K. Laser Communication with CubeSats. 2018. Available online: http://www.bostonphotonics.org/files/seminars/KCahoy-2018.pdf (accessed on 6 March 2020).
- European New Space: TESAT, KSAT, and GomSpace Partner to Build Laser Communications Capability for Small Satellites. Available online: https://spacewatch.global/2019/04/european-new-space-tesat-ksat-and-gomspace-partner-to-build-laser-communications-capability-for-small-satellites/ (accessed on 6 March 2020).
- Barnwell, N. Free-Space Optical Links for Small Spacecraft Navigation, Timing, and Communication. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2018. [Google Scholar]
- Sands, T.; Camacho, H.; Mihalik, R. Education in Nuclear Deterrence and Assurance. J. Def. Manag. 2017, 7, 2–5. [Google Scholar] [CrossRef]
- Mihalik, R.; Camacho, H.; Sands, T. Continuum of Learning: Combining Education, Training, and Experiences. Education 2018, 8, 9–13. [Google Scholar]
- Sands, T.; Mihalik, R. Outcomes of the 2010 & 2015 Nonproliferation Treaty Review Conferences. World J. Soc. Sci. Hum. 2016, 2, 46. [Google Scholar]
- Sands, T. Strategies for Combating Islamic State. Soc. Sci. 2016, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Sands, T.; Camacho, H.; Mihalik, R. Nuclear Posture Review: Kahn vs. Schelling… and Perry. J. Soc. Sci. 2018, 14, 145. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, S.; Sands, T. Eliminating the Existential Threat from North Korea. Sci. Technol. 2018, 8, 11–16. [Google Scholar]
- Sands, T.; Camacho, H.; Mihalik, R. Theoretical Context of the Nuclear Posture Review. J. Soc. Sci. 2018, 14, 124. Available online: https://thescipub.com/abstract/10.3844/jssp.2018.145.154 (accessed on 9 June 2020). [CrossRef] [Green Version]
- Bittick, L.; Sands, T. Political Rhetoric or Policy Shift: A Contextual Analysis of the Pivot to Asia. J. Soc. Sci. 2019, 15, 92. [Google Scholar] [CrossRef] [Green Version]
- Kuklinski, C.; Mitchell, J.; Sands, T. Bipolar strategic stability in a multipolar world. J. Pol. Law 2020, 13, 82. [Google Scholar] [CrossRef] [Green Version]
Level | Color | Research and Development Probability of Success 1 |
---|---|---|
1 | Low | 99 |
2 | Moderate | 90 |
3 | Moderate-to-difficult | 80 |
4 | Difficult | 50 |
5 | Very difficult | 10–20 |
Condition | Scattering Coefficient 1 |
---|---|
Visibility > 50 km | 1.6 |
6 km < Visibility < 50 km | 1.3 |
Visibility < 50 km | 0.34 + 0.0585 (Visibility)1/3 |
Visibility > 60 km | 1.6 |
6 km < Visibility < 50 km | 1.3 |
1 km < Visibility < 6 km | 0.34 + 0.16 (Visibility) |
0.5 km < Visibility < 1 km | (Visibility) − 0.5 |
Visibility <0.5 km | 0 |
Advantage | Disadvantage |
---|---|
Commercial sector early adoption | Atmospheric interference(s) |
Data throughput | Relative newness |
Lower power | - |
Robustness to detection | - |
Robustness to jamming | - |
Robustness to deception | - |
Index | Key Performance Parameters |
---|---|
1 | Adaptive optics |
2 | Acquisition, tracking, and pointing |
3 | Laser source parameters |
4 | Transmitter and telescope |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmytryszyn, M.; Crook, M.; Sands, T. Lasers for Satellite Uplinks and Downlinks. Sci 2021, 3, 4. https://doi.org/10.3390/sci3010004
Dmytryszyn M, Crook M, Sands T. Lasers for Satellite Uplinks and Downlinks. Sci. 2021; 3(1):4. https://doi.org/10.3390/sci3010004
Chicago/Turabian StyleDmytryszyn, Mark, Matthew Crook, and Timothy Sands. 2021. "Lasers for Satellite Uplinks and Downlinks" Sci 3, no. 1: 4. https://doi.org/10.3390/sci3010004
APA StyleDmytryszyn, M., Crook, M., & Sands, T. (2021). Lasers for Satellite Uplinks and Downlinks. Sci, 3(1), 4. https://doi.org/10.3390/sci3010004