Simultaneous Analysis of Early Components P1 and N1 and Phase and Non-Phase Alpha Activities Associated with Word Recall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Participants
2.3. Cognitive Task
2.4. EEG Recording and Analysis
2.5. Statistical Analysis
3. Results
3.1. Behavior
3.2. ERPs
3.3. Alpha Phase and Non-Phase Activities
3.4. Topographic Correlation Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gevins, A.S.; Schaffer, R.E. A critical review of electroencephalographic (EEG) correlates of higher cortical functions. Crit. Rev. Bioeng. 1980, 4, 113–164. [Google Scholar] [PubMed]
- Lopes da Silva, F. Neural mechanisms underlying brain waves: From neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Ünsal, E.; Duygun, R.; Yemeniciler, İ.; Bingöl, E.; Ceran, Ö.; Güntekin, B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci. 2024, 14, 837. [Google Scholar] [CrossRef] [PubMed]
- Markand, O.N. Alpha rhythms. J. Clin. Neurophysiol. 1990, 7, 163–189. [Google Scholar] [CrossRef]
- Morrone, J.; Minini, L. The interlinking of alpha waves and visuospatial cognition in motor-based domains. Neurosci. Biobehav. Rev. 2023, 149, 105152. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Stancák, A.; Neuper, C. Event-related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. Int. J. Psychophysiol. 1996, 24, 39–46. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Worden, M.S.; Foxe, J.J.; Wang, N.; Simpson, C.V. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha band electroencephalography increases over occipital cortex. J. Neurosci. 2000, 20, RC63. [Google Scholar] [CrossRef]
- Vázquez-Marrufo, M.; García-Valdecasas, M.; Caballero-Diaz, R.; Martin-Clemente, R.; Galvao-Carmona, A. Multiple evoked and induced alpha modulations in a visual attention task: Latency, amplitude and topographical profiles. PLoS ONE 2019, 14, e0223055. [Google Scholar] [CrossRef]
- Reischies, F.M.; Neuhaus, A.H.; Hansen, M.L.; Mientus, S.; Mulert, C.; Gallinat, J. Electrophysiological and neuropsychological analysis of a delirious state: The role of the anterior cingulate gyrus. Psychiatry Res. 2005, 138, 171–181. [Google Scholar] [CrossRef]
- Freichel, R.; Zink, N.; Chang, F.Y.; Vera, J.D.; Truong, H.; Michelini, G.; Loo, S.K.; Lenartowicz, A. Alpha event-related decreases during encoding in adults with ADHD—An investigation of sustained attention and working memory processes. Behav. Brain Res. 2024, 469, 115003. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, V.T.; May, P.J.; Tiitinen, H. Human auditory event-related processes in the time-frequency plane. Neuroreport 2004, 15, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Hari, R.; Salmelin, R.; Mäkelä, J.P.; Salenius, S.; Helle, M. Magnetoencephalographic cortical rhythms. Int. J. Psychophysiol. 1997, 26, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Sabate, M.; Llanos, C.; Enriquez, E.; Gonzalez, B.; Rodriguez, M. Fast modulation of alpha activity during visual processing and motor control. Neuroscience 2011, 189, 236–249. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, C.; Han, J. The neural mechanism of non-phase-locked EEG activity in task switching. Neurosci. Lett. 2023, 792, 136957. [Google Scholar] [CrossRef]
- Sarrias-Arrabal, E.; Martín-Clemente, R.; Galvao-Carmona, A.; Benítez-Lugo, M.L.; Vázquez-Marrufo, M. Effect of the side of presentation in the visual field on phase-locked and nonphase-locked alpha and gamma responses. Sci. Rep. 2022, 12, 13200. [Google Scholar] [CrossRef]
- Vazquez-Marrufo, M.; Sarrias-Arrabal, E.; Martin-Clemente, R.; Galvao-Carmona, A.; Navarro, G.; Izquierdo, G. Altered phase and nonphase EEG activity expose impaired maintenance of a spatial-object attentional focus in multiple sclerosis patients. Sci. Rep. 2020, 10, 20721. [Google Scholar] [CrossRef]
- Vázquez-Marrufo, M.; Caballero-Díaz, R.; Martín-Clemente, R.; Galvao-Carmona, A.; González-Rosa, J.J. Individual test-retest reliability of evoked and induced alpha activity in human EEG data. PLoS ONE 2020, 15, e0239612. [Google Scholar] [CrossRef]
- Sarrias-Arrabal, E.; Berchicci, M.; Bianco, V.; Vázquez-Marrufo, M.; Perri, R.L.; Di Russo, F. Temporal spectral evolution of pre-stimulus brain activity in visual and visuomotor tasks. Cogn. Neurodyn. 2023, 17, 1433–1446. [Google Scholar] [CrossRef]
- Cañete, O. Potenciales evocados auditivos de corteza: Complejo P1-N1-P2 y sus aplicaciones clínicas. Rev. Otorrinolaringol. 2014, 74, 266–274. [Google Scholar] [CrossRef]
- Jha, A.P. Tracking the time-course of attentional involvement in spatial working memory: An event-related potential investigation. Brain Res. Cogn. 2002, 15, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Itier, R.J.; Taylor, M.J. Effects of repetition and configural changes on the development of face recognition processes. Dev. Sci. 2004, 7, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Schack, B.; Schabus, M.; Doppelmayr, M.; Gruber, W.; Sauseng, P. Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. Brain Res. Cogn. Brain Res. 2004, 19, 302–316. [Google Scholar] [CrossRef]
- Anonymous. Guideline thirteen: Guidelines for standard electrode position nomenclature. American Electroencephalographic Society. J. Clin. Neurophysiol. 1994, 11, 111–113. [Google Scholar] [PubMed]
- Topor, M.; Opitz, B.; Dean, P.J.A. In search for the most optimal EEG method: A practical evaluation of a water-based electrode EEG system. Brain Neurosci. Adv. 2021, 5, 23982128211053698. [Google Scholar] [CrossRef]
- Gratton, G.; Coles, M.G.; Donchin, E. A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 1983, 55, 468–484. [Google Scholar] [CrossRef]
- Sarrias-Arrabal, E.; Eichau, S.; Galvao-Carmona, A.; Domínguez, E.; Izquierdo, G.; Vázquez-Marrufo, M. Deficits in Early Sensory and Cognitive Processing Are Related to Phase and Nonphase EEG Activity in Multiple Sclerosis Patients. Brain Sci. 2021, 11, 629. [Google Scholar] [CrossRef]
- Keil, A.; Müller, M.M. Feature selection in the human brain: Electrophysiological correlates of sensory enhancement and feature integration. Brain Res. 2010, 1313, 172–184. [Google Scholar] [CrossRef]
- David, O.; Kilner, J.M.; Friston, K.J. Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage 2006, 31, 1580–1591. [Google Scholar] [CrossRef]
- Truccolo, W.A.; Ding, M.; Knuth, K.H.; Nakamura, R.; Bressler, S.L. Trial-to-trial variability of cortical evoked responses: Implications for the analysis of functional connectivity. Clin. Neurophysiol. 2002, 113, 206–226. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp: Armonk, NY, USA, 2022.
- Kileny, P.R.; Kripal, J.P. Test-Retest Variability of Auditory Event-Related Potentials. Ear Hear. 1987, 8, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Marrufo, M.; González-Rosa, J.J.; Galvao-Carmona, A.; Hidalgo-Muñoz, A.R.; Borges, M.R.S.; Peña, J.L.R.; Izquierdo, G. Retest Reliability of Individual P3 Topography Assessed by High Density Electroencephalography. PLoS ONE 2013, 8, e62523. [Google Scholar] [CrossRef] [PubMed]
- Mangun, G.R.; Hillyard, S.A.; Luck, S.J. Electrocortical substrates of visual selective attention. In Attention and Performance; Meyer, D., Konblum, S., Eds.; MIT Press: Cambridge, MA, USA, 1984; Volume 14, pp. 219–243. [Google Scholar]
- Harter, M.R.; Miller, S.L.; Price, N.J.; LaLonde, M.E.; Keyes, A.L. Neural processes involved in directing attention. J. Cogn. Neurosci. 1989, 1, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J.; Heinze, H.J.; Mangun, G.R.; Hillyard, S.A. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 528–542. [Google Scholar] [CrossRef]
Physiological Parameter | Latency (ms) 1 | |
Recalled Word | Not Recalled Word | |
P1 component | 110 ± 11.6 | 112 ± 14.1 |
N1 component | 158 ± 14.9 | 160 ± 18.8 |
Alpha phase-locked | 128 ± 23.3 | 130 ± 28.4 |
Alpha non-phase locked | 132 ± 40.2 | 144 ± 50.5 |
Amplitude (µV) 1 | ||
Recalled word | Not recalled Word | |
P1 component (90–130 ms) | 7.19 ± 4.86 | 6.49 ± 4.34 |
N1 component (140–180 ms) | −2.85 ± 4.69 | −2.47 ± 4.7 |
Alpha phase-locked (90–130 ms) | 2.28 ± 1.36 | 0.91 ± 0.35 |
Alpha non-phase locked (90–130 ms) | 1.48 ± 0.99 | 0.55 ± 0.36 |
Alpha phase-locked (140–180 ms) | 2.14 ± 1.34 | 0.88 ± 0.37 |
Alpha non-phase locked (140–180 ms) | 1.43 ± 0.99 | 0.62 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Marrufo, M.; Navarro-Martos, R.; Narbona-Gonzalez, N.; Martin-Clemente, R. Simultaneous Analysis of Early Components P1 and N1 and Phase and Non-Phase Alpha Activities Associated with Word Recall. Sci 2025, 7, 84. https://doi.org/10.3390/sci7020084
Vazquez-Marrufo M, Navarro-Martos R, Narbona-Gonzalez N, Martin-Clemente R. Simultaneous Analysis of Early Components P1 and N1 and Phase and Non-Phase Alpha Activities Associated with Word Recall. Sci. 2025; 7(2):84. https://doi.org/10.3390/sci7020084
Chicago/Turabian StyleVazquez-Marrufo, Manuel, Remedios Navarro-Martos, Natividad Narbona-Gonzalez, and Ruben Martin-Clemente. 2025. "Simultaneous Analysis of Early Components P1 and N1 and Phase and Non-Phase Alpha Activities Associated with Word Recall" Sci 7, no. 2: 84. https://doi.org/10.3390/sci7020084
APA StyleVazquez-Marrufo, M., Navarro-Martos, R., Narbona-Gonzalez, N., & Martin-Clemente, R. (2025). Simultaneous Analysis of Early Components P1 and N1 and Phase and Non-Phase Alpha Activities Associated with Word Recall. Sci, 7(2), 84. https://doi.org/10.3390/sci7020084