Multimodal Hate Speech Detection in Greek Social Media
Abstract
:1. Introduction
2. Related Work
2.1. Hate Speech Detection as a Text Classification Problem
2.2. Multimodal Learning and Hate Speech Detection
3. Dataset
4. Methodology
4.1. Text Modality
A RoBERTa LM for Greek Tweets
4.2. Image Modality
4.3. Multimodal Learning
5. Results
6. Interpretability
7. Scaling and Applications
8. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, M.L.; Burnap, P.; Javed, A.; Liu, H.; Ozalp, S. Hate in the machine: Anti-Black and anti-Muslim social media posts as predictors of offline racially and religiously aggravated crime. Br. J. Criminol. 2020, 60, 93–117. [Google Scholar] [CrossRef] [Green Version]
- Halevy, A.; Ferrer, C.C.; Ma, H.; Ozertem, U.; Pantel, P.; Saeidi, M.; Silvestri, F.; Stoyanov, V. Preserving Integrity in Online Social Networks. arXiv 2020, arXiv:2009.10311. [Google Scholar]
- Waseem, Z.; Hovy, D. Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter. In Proceedings of the NAACL Student Research Workshop, San Diego, CA, USA, 13–15 June 2016; Association for Computational Linguistics: San Diego, CA, USA, 2016; pp. 88–93. [Google Scholar]
- Waseem, Z. Are You a Racist or Am I Seeing Things? Annotator Influence on Hate Speech Detection on Twitter. In Proceedings of the First Workshop on NLP and Computational Social Science, Austin, TX, USA, 5 November 2016; Association for Computational Linguistics: Austin, TX, USA, 2016; pp. 138–142. [Google Scholar]
- Mishra, P.; Del Tredici, M.; Yannakoudakis, H.; Shutova, E. Abusive Language Detection with Graph Convolutional Networks. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 2145–2150. [Google Scholar] [CrossRef]
- Radfar, B.; Shivaram, K.; Culotta, A. Characterizing Variation in Toxic Language by Social Context. In Proceedings of the International AAAI Conference on Web and Social Media; Association for the Advancement of Artificial Intelligence: Menlo Park, CA, USA, 2020; Volume 14, pp. 959–963. [Google Scholar]
- Poletto, F.; Basile, V.; Sanguinetti, M.; Bosco, C.; Patti, V. Resources and benchmark corpora for hate speech detection: A systematic review. Lang. Resour. Eval. 2020, 55, 477–523. [Google Scholar] [CrossRef]
- Guberman, J.; Schmitz, C.; Hemphill, L. Quantifying toxicity and verbal violence on Twitter. In Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, San Francisco, CA, USA, 27 February–2 March 2016; pp. 277–280. [Google Scholar]
- Gunasekara, I.; Nejadgholi, I. A review of standard text classification practices for multi-label toxicity identification of online content. In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), Brussels, Belgium, 31 October–1 November 2018; pp. 21–25. [Google Scholar]
- Parent, M.C.; Gobble, T.D.; Rochlen, A. Social media behavior, toxic masculinity, and depression. Psychol. Men Masculinities 2019, 20, 277. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems; Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NY, USA, 2013; Volume 26. [Google Scholar]
- Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on Machine Learning, PMLR, Beijing, China, 21–26 June 2014; pp. 1188–1196. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Perifanos, K.; Florou, E.; Goutsos, D. Neural Embeddings for Idiolect Identification. In Proceedings of the 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA), Zakynthos, Greece, 23–25 July 2018; pp. 1–3. [Google Scholar]
- Davidson, T.; Warmsley, D.; Macy, M.; Weber, I. Automated Hate Speech Detection and the Problem of Offensive Language. arXiv 2017, arXiv:1703.04009. [Google Scholar]
- Jaki, S.; Smedt, T.D. Right-wing German Hate Speech on Twitter: Analysis and Automatic Detection. arXiv 2019, arXiv:1910.07518. [Google Scholar]
- Poletto, F.; Stranisci, M.; Sanguinetti, M.; Patti, V.; Bosco, C. Hate speech annotation: Analysis of an italian twitter corpus. In Proceedings of the 4th Italian Conference on Computational Linguistics, CLiC-it 2017, CEUR-WS, Rome, Italy, 11–13 December 2017; Volume 2006, pp. 1–6. [Google Scholar]
- Pereira-Kohatsu, J.C.; Quijano-Sánchez, L.; Liberatore, F.; Camacho-Collados, M. Detecting and monitoring hate speech in Twitter. Sensors 2019, 19, 4654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Arora, I.; Guo, J.; Levitan, S.I.; McGregor, S.; Hirschberg, J. A Novel Methodology for Developing Automatic Harassment Classifiers for Twitter. In Proceedings of the Fourth Workshop on Online Abuse and Harms, Online, 20 November 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 7–15. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Ozler, K.B.; Kenski, K.; Rains, S.; Shmargad, Y.; Coe, K.; Bethard, S. Fine-tuning for multi-domain and multi-label uncivil language detection. In Proceedings of the Fourth Workshop on Online Abuse and Harms, 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 28–33. [Google Scholar] [CrossRef]
- Koufakou, A.; Pamungkas, E.W.; Basile, V.; Patti, V. HurtBERT: Incorporating Lexical Features with BERT for the Detection of Abusive Language. In Proceedings of the Fourth Workshop on Online Abuse and Harms, Online, 20 November 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 34–43. [Google Scholar] [CrossRef]
- Baider, F.; Constantinou, M. Covert hate speech: A contrastive study of Greek and Greek Cypriot online discussions with an emphasis on irony. J. Lang. Aggress. Confl. 2020, 8, 262–287. [Google Scholar] [CrossRef]
- Lekea, I.K.; Karampelas, P. Detecting hate speech within the terrorist argument: A Greek case. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 28–31 August 2018; pp. 1084–1091. [Google Scholar]
- Pitenis, Z.; Zampieri, M.; Ranasinghe, T. Offensive Language Identification in Greek. In Proceedings of the 12th Language Resources and Evaluation Conference, 2020; European Language Resources Association: Marseille, France, 2020; pp. 5113–5119. [Google Scholar]
- Morency, L.P.; Baltrušaitis, T. Multimodal Machine Learning: Integrating Language, Vision and Speech. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, 2017; Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 3–5. [Google Scholar]
- Lippe, P.; Holla, N.; Chandra, S.; Rajamanickam, S.; Antoniou, G.; Shutova, E.; Yannakoudakis, H. A Multimodal Framework for the Detection of Hateful Memes. arXiv 2020, arXiv:2012.12871. [Google Scholar]
- Kiela, D.; Firooz, H.; Mohan, A.; Goswami, V.; Singh, A.; Ringshia, P.; Testuggine, D. The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes. arXiv 2020, arXiv:2005.04790. [Google Scholar]
- Nakayama, H.; Kubo, T.; Kamura, J.; Taniguchi, Y.; Liang, X. Doccano: Text Annotation Tool for Human. 2018. Available online: https://github.com/doccano/doccano (accessed on 12 March 2020).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, October 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 38–45. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Tay, Y.; Dehghani, M.; Gupta, J.; Bahri, D.; Aribandi, V.; Qin, Z.; Metzler, D. Are Pre-trained Convolutions Better than Pre-trained Transformers? arXiv 2021, arXiv:2105.03322. [Google Scholar]
Model | Modality | Accuracy | F1-Score (Macro) |
---|---|---|---|
BERTaTweetGR | text | 0.894 | 0.891 |
nlpaueb/greek-bert | text | 0.944 | 0.939 |
resnet18 | image | 0.915 | 0.849 |
resnet34 | image | 0.915 | 0.858 |
resnet50 | image | 0.916 | 0.863 |
resnet101 | image | 0.917 | 0.860 |
resnet18 + nlpaueb/BERTaTweetGR | text + image | 0.94 | 0.931 |
resnet18 + nlpaueb/greek-bert | text + image | 0.970 | 0.947 |
resnet34 + nlpaueb/greek-bert | text + image | 0.964 | 0.939 |
resnet50 + nlpaueb/greek-bert | text + image | 0.960 | 0.933 |
resnet101 + nlpaueb/greek-bert | text + image | 0.960 | 0.930 |
Short Biography of Authors
Konstantinos Perifanos holds a Ph.D. degree in Natural Language Processing from National and Kapodistrian University of Athens, Greece. He is currently Head of Data Science at codec.ai. His research interests are in Deep Learning, Natural Language Processing and Artificial Intelligence. | |
Dionysis Goutsos is Professor of Text Linguistics at the University of Athens. He has also taught at the University of Birmingham (UK) and the University of Cyprus. He has written several articles on text linguistics and discourse analysis, translation studies and corpus linguistics, has published several books in English and Greek and has edited volumes in Greek, English and French. He has been research co-ordinator of the projects developing the Corpus of Greek Texts (http://www.sek.edu accessed on 12 March 2021) and the Diachronic Corpus of Greek of the 20th Century (http://greekcorpus20.phil.uoa.gr/ accessed on 12 March 2021). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perifanos, K.; Goutsos, D. Multimodal Hate Speech Detection in Greek Social Media. Multimodal Technol. Interact. 2021, 5, 34. https://doi.org/10.3390/mti5070034
Perifanos K, Goutsos D. Multimodal Hate Speech Detection in Greek Social Media. Multimodal Technologies and Interaction. 2021; 5(7):34. https://doi.org/10.3390/mti5070034
Chicago/Turabian StylePerifanos, Konstantinos, and Dionysis Goutsos. 2021. "Multimodal Hate Speech Detection in Greek Social Media" Multimodal Technologies and Interaction 5, no. 7: 34. https://doi.org/10.3390/mti5070034
APA StylePerifanos, K., & Goutsos, D. (2021). Multimodal Hate Speech Detection in Greek Social Media. Multimodal Technologies and Interaction, 5(7), 34. https://doi.org/10.3390/mti5070034