Data Governance in Multimodal Behavioral Research
Abstract
:1. Introduction
2. What Is Data Governance in Multimodal Behavioral Research?
2.1. Definition of Data Governance
2.2. Differentiating Data Governance from Data Management
2.3. Data Governance in Multimodal Behavioral Research
3. How Can Data Governance Be Implemented in Multimodal Behavioral Research?
3.1. Types of Implementations
3.2. Typical Implementation Steps
3.3. Software and Toolkits
- Data Management Platforms (DMPs): Tools like Cloudera, Snowflake, or Microsoft Azure Synapse Analytics can be used to store, manage, and process large volumes of multimodal data.
- Data Integration Tools: For integrating data from different modalities, you might use ETL (Extract, Transform, Load) tools like Talend, Informatica PowerCenter, or Apache NiFi which help in cleaning, formatting, and combining datasets.
- Metadata Management: Alation, Collibra, or IBM Watson Knowledge Catalog provide solutions for managing metadata, defining data lineage, and maintaining a data glossary which is crucial in understanding the context of multimodal data.
- Data Quality Assurance: Tools like Trillium Software (Trillium Software, Inc., Burlington, MA, USA.), Talend Data Quality (Talend. Inc., San Mateo, CA, USA), or OpenRefine (ver 3.8.1) can ensure data accuracy, completeness, and consistency across multiple datasets.
- Research Workflow and Project Management: Platforms like REDCap (Research Electronic Data Capture) (REDCap Inc., Fort Lauderdale, FL, USA), Qualtrics (Qualtrics, Inc., Provo, UT, USA.), or Labguru (BioData Inc., Westborough, MA, USA) can assist with study design, consent management, and data collection.
- Privacy and Security: Solutions like AWS Identity and Access Management (IAM), Azure Active Directory, or HashiCorp Vault can be used to enforce access control and protect sensitive research data.
- Behavioral Analysis Tools: Specific to behavioral research, tools like ELAN (ELAN Corporation, Matsumoto, Japan) (for annotating videos), R or Python libraries (e.g., OpenFace for facial expression analysis, MNE-Python for EEG/MEG data processing), and MATLAB toolboxes (e.g., Psychtoolbox for stimulus presentation and response logging).
- Compliance and Consent Management: Platforms like Consentric or Ethical Intelligence can help manage informed consent and ensure compliance with regulations like GDPR and HIPAA.
- Data Sharing and Archiving: Dataverse, OSF (Open Science Framework) (Center for Open Science, Charlottesville, VA, USA.), or Zenodo can be used for sharing and archiving research data according to FAIR principles (Findable, Accessible, Interoperable, and Reusable).
4. Complexities to Consider When Governing Data in Multimodal Behavioral Research
4.1. Benefits of Data Governance in Multimodal Behavioral Research
4.2. Disadvantages and Drawbacks
4.3. Risks to Consider
5. A Demonstrative Case in Multimodal Behavioral Research
5.1. Sources of Data
5.2. Problem Identification
5.3. Necessity for Data Governance
5.4. Methods
5.5. Analysis and Evaluation
- Mixed-Methods Approach: The study uses both quantitative and qualitative methods to triangulate findings from the different data modalities.
- Longitudinal Analysis: Researchers perform repeated measures ANOVA and multilevel modeling to examine changes in sleep patterns, stress, and academic performance over time.
- Data Governance Impact Assessment: Throughout the study, the effectiveness of the data governance strategy is continually evaluated by monitoring data completeness, internal consistency, and the ability to detect expected relationships among variables.
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lysaght, T.; Lim, H.Y.; Xafis, V.; Ngiam, K.Y. AI-Assisted Decision-making in Healthcare: The Application of an Ethics Framework for Big Data in Health and Research. Asian Bioeth. Rev. 2019, 11, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Asthana, S.; Mukherjee, S.; Phelan, A.L.; Standley, C.J. Governance and Public Health Decision-Making during the COVID-19 Pandemic: A Scoping Review. Public Health Rev. 2024, 45, 1606095. [Google Scholar] [CrossRef]
- Brown, P.A.; Anderson, R.A. A methodology for preprocessing structured big data in the behavioral sciences. Behav. Res. Methods 2023, 55, 1818–1838. [Google Scholar] [CrossRef] [PubMed]
- Elshawi, R.; Sakr, S.; Talia, D.; Trunfio, P. Big Data Systems Meet Machine Learning Challenges: Towards Big Data Science as a Service. Big Data Res. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Alvarez-Romero, C.; Martínez-García, A.; Bernabeu-Wittel, M.; Parra-Calderón, C.L. Health data hubs: An analysis of existing data governance features for research. Health Res. Policy Syst. 2023, 21, 70. [Google Scholar] [CrossRef] [PubMed]
- Lahat, D.; Adali, T.; Jutten, C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proc. IEEE 2015, 103, 1449–1477. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 423–443. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Prieto-Avalos, G.; Cruz-Ramos, N.A.; Alor-Hernández, G.; Sánchez-Cervantes, J.L.; Rodríguez-Mazahua, L.; Guarneros-Nolasco, L.R. Wearable Devices for Physical Monitoring of Heart: A Review. Biosensors 2022, 12, 292. [Google Scholar] [CrossRef]
- Mangaroska, K.; Martinez-Maldonado, R.; Vesin, B.; Gašević, D. Challenges and opportunities of multimodal data in human learning: The computer science students’ perspective. J. Comput. Assist. Learn. 2021, 37, 1030–1047. [Google Scholar] [CrossRef]
- Choudhury, S.; Fishman, J.R.; McGowan, M.L.; Juengst, E.T. Big data, open science and the brain: Lessons learned from genomics. Front. Hum. Neurosci. 2014, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- DAMA International. DAMA-DMBOK Revised Edition, 2nd ed.; Technics Publications: Denville, NJ, USA, 2024; pp. 100–121. [Google Scholar]
- Khatri, V.; Brown, C.V. Designing data governance. Commun. ACM 2010, 53, 148–152. [Google Scholar] [CrossRef]
- McMurry, J.A.; Juty, N.; Blomberg, N.; Burdett, T.; Conlin, T.; Conte, N.; Courtot, M.; Deck, J.; Dumontier, M.; Fellows, D.K.; et al. Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data. PLoS Biol. 2017, 15, e2001414. [Google Scholar] [CrossRef]
- Ferretti, A.; Ienca, M.; Sheehan, M.; Blasimme, A.; Dove, E.S.; Farsides, B.; Friesen, P.; Kahn, J.; Karlen, W.; Kleist, P.; et al. Ethics review of big data research: What should stay and what should be reformed? BMC Med. Ethics. 2021, 22, 51. [Google Scholar] [CrossRef] [PubMed]
- The DGI Data Governance Framework. Available online: https://datagovernance.com/the-dgi-data-governance-framework/ (accessed on 1 January 2020).
- Schwartz, P.H.; Caine, K.; Alpert, S.A.; Meslin, E.M.; Carroll, A.E.; Tierney, W.M. Patient Preferences in Controlling Access to Their Electronic Health Records: A Prospective Cohort Study in Primary Care. J. Gen. Intern. Med. 2017, 30, 25–30. [Google Scholar] [CrossRef]
- Abraham, R.; Schneider, J.; Vom Brocke, J. Data governance: A conceptual framework, structured review, and research agenda. Int. J. Inf. Manag. 2019, 49, 424–438. [Google Scholar] [CrossRef]
- Alwahaby, H.; Cukurova, M.; Papamitsiou, Z.; Giannakos, M. The Multimodal Learning Analytics Handbook; Springer: Cham, Switzerland, 2022; pp. 289–325. [Google Scholar]
- Norris, S. Systematically Working with Multimodal Data: Research Methods in Multimodal Discourse Analysis; John Wiley & Sons: New York, NY, USA, 2019; pp. 159–195. [Google Scholar]
- Rahimi, F.; Kaleibar, F.J.; Feizi, F.; Nia, A.H.; Kashfi, H. Navigating Data Governance in the Telecom Industry. In Proceedings of the 7th Iranian Conference on Advances in Enterprise Architecture (ICAEA), Tehran, Iran, 15–16 November 2023. [Google Scholar]
- Alhassan, I.; Sammon, D.; Daly, M. Data governance activities: A comparison between scientific and practice-oriented literature. J. Enterp. Inf. Manag. 2018, 31, 300–316. [Google Scholar] [CrossRef]
- Alhassan, I.; Sammon, D.; Daly, M. Data governance activities: An analysis of the literature. J. Decis. Syst. 2016, 25 (Suppl. S1), 64–75. [Google Scholar] [CrossRef]
- Marcucci, S.; Alarcón, N.G.; Verhulst, S.G.; Wüllhorst, E. Informing the Global Data Future: Benchmarking Data Governance Frameworks. Data Policy 2023, 5, e30. [Google Scholar] [CrossRef]
- Holmes, E.A.; Craske, M.G.; Graybiel, A.M. Psychological treatments: A call for mental-health science. Nature 2014, 511, 287–289. [Google Scholar] [CrossRef]
- Bergren, M.D. Data Governance and Stewardship. NASN Sch Nurse. 2019, 34, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Dé, R.; Ravishankar, M. Improving the governance of information technology: Insights from the history of Internet governance. J. Inf. Technol. 2022, 37, 266–287. [Google Scholar] [CrossRef]
- Floridi, L.; Taddeo, M. What is data ethics? Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. Med. 2016, 374, 20160360. [Google Scholar]
- Colesky, M.; Hoepman, J.-H.; Hillen, C. A Critical Analysis of Privacy Design Strategies. In Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 33–40. [Google Scholar]
- Michota, A.; Katsikas, S. Towards improving existing online social networks’ privacy policies. Int. J. Inf. Priv. Secur. Integr. 2018, 3, 209–229. [Google Scholar]
- Berson, A.; Dubov, L. Master Data Management and Data Governance, 2nd ed.; McGraw-Hill: New York, NY, USA, 2011; pp. 153–180. [Google Scholar]
- Ram, J.; Afridi, N.K.; Khan, K.A. Adoption of Big Data analytics in construction: Development of a conceptual model. Built Environ. Proj. Asset Manag. 2019, 9, 564–579. [Google Scholar] [CrossRef]
- Sunyaev, A.; Dehling, T.; Taylor, P.L.; Mandl, K.D. Availability and quality of mobile health app privacy policies. J. Am. Med. Inform. Assoc. 2015, 22, e28–e33. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Gao, J.; Tao, C. Big Data Validation Case Study. In Proceedings of the 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco, CA, USA, 6–9 April 2017; pp. 281–286. [Google Scholar]
- Mittelstadt, B.D.; Floridi, L. The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts. Sci. Eng. Ethic 2015, 22, 303–341. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Sachindra, D.; Shahid, S.; Iqbal, Z.; Nawaz, N.; Khan, N. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Res. 2019, 236, 104806. [Google Scholar] [CrossRef]
- Archer, J.; Stevenson, L.; Couzens, J.; Ripley, E. Connecting patient experience, leadership, and the importance of involvement, information, and empathy in the care process. Healthc. Manag. Forum 2018, 31, 252–255. [Google Scholar] [CrossRef]
- Lee, M.D.; Criss, A.H.; Devezer, B.; Donkin, C.; Etz, A.; Leite, F.P.; Matzke, D.; Rouder, J.N.; Trueblood, J.S.; White, C.N.; et al. Robust Modeling in Cognitive Science. Comput. Brain Behav. 2019, 2, 141–153. [Google Scholar] [CrossRef]
- Strong, D.M.; Lee, Y.W.; Wang, R.Y. Data quality in context. Commun. ACM 1997, 40, 103–110. [Google Scholar] [CrossRef]
- Braithwaite, J.; Herkes, J.; Ludlow, K.; Testa, L.; Lamprell, G. Association between organisational and workplace cultures, and patient outcomes: Systematic review. BMJ Open 2018, 7, e017708. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Levy, A.R.; Teschke, K.E. Personal privacy and public health: Potential impacts of privacy legislation on health research in Canada. Can. J. Public Health 2019, 99, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Willcocks, L.; Lacity, M. Service Automation: Robots and the Future of Work; Steve Brookes Publishing: Warwickshire, UK, 2016; pp. 203–233. [Google Scholar]
- Redman, T.C. Data’s credibility problem. Harv. Bus. Rev. 2019, 91, 84–88. [Google Scholar]
- De Sousa, W.G.; de Melo, E.R.P.; Bermejo, P.H.D.S.; Farias, R.A.S.; Gomes, A.O. How and where is artificial intelligence in the public sector going? A literature review and research agenda. Gov. Inf. Q. 2020, 36, 101392. [Google Scholar] [CrossRef]
- Haverila, M.; Haverila, K.; Gani, M.O.; Mohiuddin, M. The relationship between the quality of big data marketing analytics and marketing agility of firms: The impact of the decision-making role. J. Mark. Anal. 2024. [Google Scholar] [CrossRef]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Zhu, Z.; Pan, S. Data Governance in Multimodal Behavioral Research. Multimodal Technol. Interact. 2024, 8, 55. https://doi.org/10.3390/mti8070055
Jiang Z, Zhu Z, Pan S. Data Governance in Multimodal Behavioral Research. Multimodal Technologies and Interaction. 2024; 8(7):55. https://doi.org/10.3390/mti8070055
Chicago/Turabian StyleJiang, Zhehan, Zhengzhou Zhu, and Shucheng Pan. 2024. "Data Governance in Multimodal Behavioral Research" Multimodal Technologies and Interaction 8, no. 7: 55. https://doi.org/10.3390/mti8070055
APA StyleJiang, Z., Zhu, Z., & Pan, S. (2024). Data Governance in Multimodal Behavioral Research. Multimodal Technologies and Interaction, 8(7), 55. https://doi.org/10.3390/mti8070055