Alterations and Dynamics of Major Meningitis Etiological Agents During and Post-COVID-19 Pandemic: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection Method
3.2. Viral Meningitis
3.2.1. Enterovirus
3.2.2. Other Viruses
3.2.3. Aseptic Meningitis
3.3. Bacterial Meningitis
3.3.1. Meningococcal Disease
3.3.2. Streptococcus pneumoniae
3.3.3. Streptococcus agalactiae
3.3.4. Streptococcus pyogenes
3.3.5. Haemophilus influenzae
3.3.6. Listeria monocytogenes
3.3.7. Other Causative Pathogens and Meningitis Due to Drug-Resistant Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohil, A.; Jemmieh, S.; Smatti, M.K.; Yassine, H.M. Viral meningitis: An overview. Arch. Virol. 2021, 166, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Oordt-Speets, A.M.; Bolijn, R.; van Hoorn, R.C.; Bhavsar, A.; Kyaw, M.H. Global etiology of bacterial meningitis: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0198772. [Google Scholar] [CrossRef] [PubMed]
- Peñata, A.; Mesa, S.; Leal, A.; Castaño, T.; Bustamante, J.; Sigifredo, O. Molecular diagnosis of meningitis and meningoencephalitis with an automated real-time multiplex polymerase chain reaction in a tertiary reference complex in Medellín, Colombia. Rev. Inst. Med. Trop. Sao Paulo 2022, 62, e77. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.J.; Uyeki, T.M.; Chu, H.Y. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat. Rev. Microbiol. 2023, 21, 195–210. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; Jansen van Rensburg, M.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, 195–210. [Google Scholar]
- Shaw, D.; Abad, R.; Amin-Chowdhury, Z.; Bautista, A.; Bennett, D.; Broughton, K.; Cao, B.; Casanova, C.; Choi, E.H.; Chu, Y.-W.; et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: Analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit. Health 2023, 5, e582–e593. [Google Scholar] [CrossRef]
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological quality and synthesis of case series and case reports. BMJ Evid. Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef]
- Kies, K.D.; Thomas, A.S.; Binnicker, M.J.; Bashynski, K.L.; Patel, R. Decrease in Enteroviral Meningitis: An Unexpected Benefit of Coronavirus Disease 2019 (COVID-19) Mitigation? Clin. Infect. Dis. 2021, 73, e2807–e2809. [Google Scholar] [CrossRef]
- Stoffel, L.; A Agyeman, P.K.; Keitel, K.; Barbani, M.T.; Duppenthaler, A.; Kopp, M.V.; Aebi, C. Striking Decrease of Enteroviral Meningitis in Children During the COVID-19 Pandemic. Open Forum Infect. Dis. 2021, 8, ofab115. [Google Scholar] [CrossRef]
- Luciani, L.; Ninove, L.; Zandotti, C.; Nougairède, A. COVID-19 pandemic and its consequences disrupt epidemiology of enterovirus meningitis, South-East France. J. Med. Virol. 2021, 93, 1929–1931. [Google Scholar] [CrossRef]
- OKadambari, S.; Abdullahi, F.; Celma, C.; Ladhani, S. Epidemiological trends in viral meningitis in England: Prospective national surveillance, 2013–2023. J. Infect. 2024, 89, 106223. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Guo, Y.; Li, L.; Li, Y.; Zhou, H.; Li, W. Epidemiology of childhood enterovirus infections in Hangzhou, China, 2019–2023. Virol. J. 2024, 21, 198. [Google Scholar] [CrossRef]
- Fratty, I.S.; Kriger, O.; Weiss, L.; Vasserman, R.; Erster, O.; Mendelson, E.; Sofer, D.; Weil, M. Increased detection of Echovirus 6-associated meningitis in patients hospitalized during the COVID-19 pandemic, Israel 2021–2022. Clin. Virol. 2023, 162, 105425. [Google Scholar] [CrossRef] [PubMed]
- Gad, B.; Kłosiewicz, P.; Oleksiak, K.; Krzysztoszek, A.; Toczyłowski, K.; Sulik, A.; Wieczorek, T.; Wieczorek, M. Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant. Viruses 2024, 16, 1011. [Google Scholar] [CrossRef] [PubMed]
- Völk, S.; Pfirrmann, M.; Koedel, U.; Pfister, H.-W.; Lang, T.; Scheibe, F.; Salih, F.; Herzig-Nichtweiss, J.; Zimmermann, J.; Alonso, A.; et al. Decline in the number of patients with meningitis in German hospitals during the COVID-19 pandemic. J. Neurol. 2018, 269, 3389–3399. [Google Scholar] [CrossRef]
- McBride, M.; Williman, J.; Best, E.; Walls, T.; Sadarangani, M.; Grant, C.C.; Martin, N.G. The epidemiology of aseptic meningitis in New Zealand children from 1991 to 2020. J. Paediatr. Child Health 2022, 58, 1980–1989. [Google Scholar] [CrossRef]
- Lee, J.; Choi, A.; Kim, K.; Bin, J.H.; Eom, T.H.; Yoo, I.H.; Yoon, D.H.; Kim, S.; Kim, Y.H. Changes in the Epidemiology and Causative Pathogens of Meningitis in Children After the Outbreak of the Coronavirus Disease 2019: A Multicenter Database Study. Front. Pediatr. 2022, 23, 810616. [Google Scholar] [CrossRef]
- Akaishi, T.; Tarasawa, K.; Fushimi, K.; Ota, C.; Sekiguchi, S.; Aoyagi, T.; Yaegashi, N.; Aoki, M.; Fujimori, K. Reduction in the Number of Hospitalized Cases of Acute Meningitis during the COVID-19 Pandemic in Japan. Intern. Med. 2024, 63, 1353–1359. [Google Scholar] [CrossRef]
- Arad, B.; Farshad, M.H.; Jamshidi, M.; Pirzadeh, Z. Impact of the COVID-19 Outbreak on Aseptic Meningitis in Children. Iran. J. Child Neurol. 2024, 18, 83–89. [Google Scholar]
- Garcez, V.; Correa, T.L. Hospital admissions for bacterial meningitis during 2019–2020 in Brazil. J. Neurol. Sci. 2021, 429, 118248. [Google Scholar] [CrossRef]
- Brito, C.V.B.; Formigosa, C.A.C.; Neto, O.S.M. Impact of COVID-19 pandemic on notifiable diseases in Northern Brazil. Rev. Bras. Promoç Saúde 2022, 35, 12777. [Google Scholar]
- Jbari, S.; Lahmini, W.; Boussaa, S.; Bourrous, M. Impact of COVID-19 pandemic on pediatric meningitis incidence in central Morocco. Sci. Afr. 2022, 16, e01213. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Laganà, A.; Genovese, G.; Romeo, B.; Sidoti, S.; D’Andrea, G.; Raco, C.; Visalli, G.; DI Pietro, A. Impact of the COVID-19 pandemic on the infectious disease epidemiology. J. Prev. Med. Hyg. 2023, 64, E274–E282. [Google Scholar] [PubMed]
- Contarino, F.; Bella, F.; DI Pietro, E.; Randazzo, C.; Contrino, M.L. Impact of the COVID-19 pandemic on infectious diseases reporting. J. Prev. Med. Hyg. 2024, 65, E145–E153. [Google Scholar]
- Ktena, D.; Kourkouni, E.; Kontopidou, F.; Gkolfinopoulou, K.; Papadima, K.; Georgakopoulou, T.; Magaziotou, I.; Andreopoulou, A.; Tzanakaki, G.; Zaoutis, T.; et al. Population-based study of influenza and invasive meningococcal disease among Greek children during the COVID-19 pandemic. BMJ Paediatr. Open 2022, 6, e001391. [Google Scholar] [CrossRef]
- Deghmane, A.E.; Taha, M.K. Changes in Invasive Neisseria meningitidis and Haemophilus influenzae Infections in France during the COVID-19 Pandemic. Microorganisms 2022, 10, 907. [Google Scholar] [CrossRef]
- Taha, S.; Deghmane, A.E.; Taha, M.K. Recent increase in atypical presentations of invasive meningococcal disease in France. BMC Infect. Dis. 2024, 24, 640. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Yen, M.Y.; Lee, P.I.; Ko, W.C.; Hsueh, P.R. The impact of COVID-19 preventative measures on airborne/droplet-transmitted infectious diseases in Taiwan. J. Infect. 2021, 82, e30–e31. [Google Scholar] [CrossRef]
- Prasad, N.; Rhodes, J.; Deng, L.; McCarthy, N.L.; Moline, H.L.; Baggs, J.; Reddy, S.C.; A Jernigan, J.; Havers, F.P.; Sosin, D.M.; et al. Changes in the Incidence of Invasive Bacterial Disease During the COVID-19 Pandemic in the United States, 2014–2020. J. Infect. Dis. 2023, 227, 907–916. [Google Scholar] [CrossRef]
- Delfino, M.; Méndez, A.P.; Ferrer, M.P.; Pírez, M.C. 1320. Pneumococcal Meningitis Before and During COVID-19 Pandemic in Uruguay, South America (2017–2022). In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2023; Volume 10, p. ofad500.1159. [Google Scholar]
- Liechti, F.D.; Bijlsma, M.W.; Brouwer, M.C.; van Sorge, N.M.; van de Beek, D. Impact of the COVID-19 pandemic on incidence and serotype distribution of pneumococcal meningitis—A prospective, nationwide cohort study from The Netherlands. J. Infect. 2024, 88, 65–67. [Google Scholar] [CrossRef]
- Aronson, P.L.; Kerns, E.; Jennings, B.; Magee, S.; Wang, M.E.; McDaniel, C.E.; AAP Revise II QI Collaborative. Trends in Prevalence of Bacterial Infections in Febrile Infants During the COVID-19 Pandemic. Pediatrics 2022, 150, e2022059235. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, E.B.; Bruijning-Verhagen, P.C.J.; Borensztajn, D.M.; Vermont, C.L.; Quaak, M.S.W.; Janson, J.-A.; Maat, I.; Stol, K.; Vlaminckx, B.J.M.; Wieringa, J.W.; et al. Increase in Invasive Group a Streptococcal Infections in Children in The Netherlands, A Survey Among 7 Hospitals in 2022. Pediatr. Infect. Dis. J. 2023, 42, e122–e124. [Google Scholar] [CrossRef] [PubMed]
- de Gier, B.; Marchal, N.; de Beer-Schuurman, I.; Te Wierik, M.; Hooiveld, M.; ISIS-AR Study Group; GAS Study Group; de Melker, H.E.; van Sorge, N.M.; Members of the GAS Study Group; et al. Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in The Netherlands, 2022. Eurosurveillance 2023, 28, 2200941. [Google Scholar] [CrossRef]
- Nack, T.; Vallejo, J.G.; Dunn, J.; Flores, A.R.; McNeil, J.C. Invasive Group A Streptococcus in Infants Less Than 1-year of Age From 2012 to 2022: A Single-Center Experience. J. Pediatr. Infect. Dis. Soc. 2024, 13, 110–113. [Google Scholar] [CrossRef]
- Cinicola, B.L.; Sani, I.; Pulvirenti, F.; Capponi, M.; Leone, F.; Spalice, A.; Montalbano, A.; Macari, A.; Fonte, M.T.; Giampietro, P.G.; et al. Group A Streptococcus infections in children and adolescents in the post-COVID-19 era: A regional Italian survey. Ital. J. Pediatr. 2024, 50, 177. [Google Scholar] [CrossRef]
- Mania, A.; Mazur-Melewska, K.; Witczak, C.; Cwalińska, A.; Małecki, P.; Meissner, A.; Słopień, A.; Figlerowicz, M. Invasive group A streptococcal infections as a consequence of coexisting or previous viral infection in the post-COVID-19 pandemic period. J. Infect. Public Health 2025, 18, 102622. [Google Scholar] [CrossRef]
- Steens, A.; Stanoeva, K.R.; Knol, M.J.; Mariman, R.; de Melker, H.E.; van Sorge, N.M. Increase in invasive disease caused by Haemophilus influenzae b, the Netherlands, 2020 to 2021. Eurosurveillance 2021, 26, 2100956. [Google Scholar] [CrossRef]
- Vázquez, E.; de Gregorio-Vicente, O.; Soriano, V.; Álvarez-Domínguez, C.; Corral, O.; Moreno-Torres, V. Increased incidence and mortality from Listeria monocytogenes infection in Spain. Int. J. Infect. Dis. 2024, 145, 107089. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.; Sun, S.; Yi, M.; Wang, S. Impact of COVID-19 on the Prevalence and Drug Resistance of Bacteria Isolated From Bacterial Meningitis Cerebrospinal Fluid in Shandong Province: A Multicenter Retrospective Study. J. Med. Virol. 2024, 96, e70063. [Google Scholar] [CrossRef]
- Shen, S.; Findlow, J.; Peyrani, P. Global Epidemiology of Meningococcal Disease-Causing Serogroups Before and After the COVID-19 Pandemic: A Narrative Review. Infect. Dis. Ther. 2024, 13, 2489–2507. [Google Scholar] [CrossRef]
- Bloom, D.E.; Bonanni, P.; Martinón-Torres, F.; Richmond, P.C.; Safadi, M.A.P.; Salisbury, D.M.; Charos, A.; Schley, K.; Findlow, J.; Balmer, P. Meningococcal Disease in the Post-COVID-19 Era: A Time to Prepare. Infect. Dis. Ther. 2023, 12, 2649–2663. [Google Scholar] [CrossRef] [PubMed]
- Oduoye, M.O.M.; Akanbi-Hakeem, H.B.; Muzammil, M.A.M.; Arama, U.O.M.; Abbasi, H.Q.M.; Farhan, K.M.; Fariha, F.M.; Modupeoluwa, O.O.M.; Paul, H.W.M.; Badarou, A.-D.E.M.; et al. Meningitis in Niger Republic amidst COVID-19: Current issues and novel recommendations. Ann. Med. Surg. 2023, 86, 345–352. [Google Scholar] [CrossRef]
Country | Study Period | Number | Summary of Data | p-Value | Trends of Cases |
---|---|---|---|---|---|
USA [8] | 2012–2020 | 3129 | 92.6% reduction in positivity rates in 2020 | N/A | Decrease |
Switzerland [9] | 2010–2020 | 288 | 100% reduction in EV meningitis cases in 2020 (0 cases) | N/A | Decrease |
France [10] | 2018–2020 | 15 | 98.4% reduction in EV meningitis cases in 2020 | p < 0.001 | Decrease |
German [15] | 2016–2020 | 540 | 78.4% decline in EV meningitis cases in 2020 compared to 2019 | p < 0.001 | Decrease |
New Zealand [16] | 1991–2020 | 5142 | 52.2% reduction in aseptic meningitis in the median hospitalization rate in 2020 * | N/A | Decrease |
Korea [17] | 2017–2020 | 116 | 100% reduction in EV meningitis cases in 2020 (0 cases) | p < 0.001 | Decrease |
Israel [13] | 2021–2022 | 98 | 66% reduction in EV meningitis in January 2022 and 78% increase in March 2022 | N/A | Decrease in January 2022 and increase in March 2022 |
England [11] | 2013–2023 | 13,585 | 77.7% significant decline in EV meningitis cases during 2020–2021 1 | N/A | Decrease |
China [12] | 2019–2023 | 1162 | 21.1% decline in 2020; 385% and 82.6% increase in 2021 and 2023. | p < 0.0001 | Decrease in 2020 and 2023; increase in 2021 |
Poland [14] | 2016–2023 | 266 2 11 3 | 100% decline in 2020 and 2021 | N/A | Decrease in 2019–2020 and increase in 2022–2023 |
Country | Study Period | Etiological Agents | Number of Cases | Summary of Data | p-Value | Trends |
---|---|---|---|---|---|---|
1 26 countries [5] | 2018–2020 | S. pneumoniae, H. influenzae, N. meningitidis, S. agalactiae | 7651 | A significant and sustained reduction in invasive diseases due to S. pneumoniae, H. influenzae, and N. meningitidis in early 2020. No significant changes in the incidence of invasive S. agalactiae infections were observed | p < 0.0001 | Decrease |
2 30 countries [6] | 2018–2021 | S. pneumoniae, H. influenzae, N. meningitidis, S. agalactiae | 116,841 | Significant reductions were observed in: S. pneumoniae (49.6%), H. influenzae (41.2%), and N. meningitidis (66.3%). In contrast, S. agalactiae showed a slight increase (5.7%) in average of cases | p < 0.0001 | Decrease and increase * |
Italy [23] | 2017–2022 | S. pneumoniae, N. meningitidis | 32 | 80% decrease in bacterial meningoencephalitis. Meningococcal and pneumococcal forms decreased by 80% and 87.5% | p < 0.0001 | Decrease |
Italy [24] | 2017–2022 | All bacteria | N/A | Vaccine-preventable invasive bacterial diseases decreased by 83.3% in the post-pandemic period | p < 0.05 | Decrease |
Italy [36] | 2023 (January–May) | S. pyogenes | 358 | 20.3% GAS infection post-COVID-19. A single patient was hospitalized with GAS meningitis | N/A | Not informed |
Brazil [20] | 2019–2020 | All bacteria | 6921 | Bacterial meningitis decreased 30.1% between 2019 and 2020 | N/A | Decrease |
Brazil [21] | 2015–2020 | All bacteria | N/A | Meningitis decreased 73% between 2019 and 2020 | N/A | Decrease |
Morocco [22] | 2019–2020 | All bacteria | 72 | Bacterial meningitis was 6 times more frequent during containment | p < 0.05 | Increase |
Greece [25] | 2014–2021 | N. meningitidis | N/A | 70% decrease in the mean annual rate of IMD in 2020–2021 | N/A | Decrease |
France [26] | 2017–2021 | H. influenzae, N. meningitidis | 1595 3 808 4 | IMD cases decreased by 52.9% and 75.2% in 2020 and 2021. IHiD cases decreased by 21.2% in 2020 and increased by 3.1% in 2021 | p < 0.0001 | Decrease |
France [27] | 2015–2022 | N. meningitidis | 2719 | IMD decreased by 47.7% and 72.8% in 2020 and 2021. Meningococcal meningitis decreased from 44.1% to 32.7% in seven years | p = 0.03 | Decrease |
Taiwan [28] | 2019–2020 | S. pneumoniae, H. influenzae, N. meningitidis | 545 5 11 6 4 4 | IPD and meningococcal meningitis decreased 45.2% and 16.7% during the pandemic. IHiD increased from 1 to 3 cases in the same period | N/A | Decrease |
Uruguay [30] | 2017–2022 | S. pneumoniae | 100 | Pneumococcal meningitis decreased by 79.7% by the late-pandemic phase (2022; 29 cases) | p = 0.005 | Decrease |
USA [29] | 2014–2020 | S. pneumoniae, H. influenzae, S. agalactiae, S. pyogenes | 1,019,887 | Incidences of S. pneumoniae, H. influenzae, GAS, and GBS were 58%, 60%, 28%, and 12% lower during the pandemic period of 2020, respectively | N/A | Decrease |
USA/Canada [32] | 2020–2022 | E. coli, S. agalactiae | 9112 | Monthly downward trend in the incidence of bacterial meningitis due S. agalactiae (44.2%) and E. coli (30.2%) | N/A | Decrease |
USA [35] | 2012–2018 | S. pyogenes | 504 | 83.3% decrease in iGAS cases between 2019 and 2020. In 2021 and 2022, there were, respectively, 0 and 10 cases | N/A | Decrease |
Netherlands [31] | 2014–2023 | S. pneumoniae | 1210 | Between 2014 and 2023, 1210 cases of pneumococcal meningitis were identified, with an IR of 1.02 (2014–2020). During the pandemic (2020–2022), IR dropped by approximately 50% | N/A | Decrease |
Netherlands [33] | 2021–2022 | S. pyogenes | 117 | 121.7% (5.1/month) increase in pediatric iGAS cases compared to the pre-pandemic period (2.3/month) | N/A | Increase |
Netherlands [34] | 2016–2021 | S. pyogenes | 319 | 118% increase in non-puerperal iGAS cases compared to the pre-pandemic period | N/A | Increase |
Netherlands [38] | 1992–2021 | H. influenzae | N/A | Increase in the overall incidences in 2020 (0.39 per 100,000) and 2021 (0.33 per 100,000). It remained below 0.3 cases per 100,000 from 1996 to 2019 | N/A | Increase |
Poland [37] | 2022–2023 | S. pyogenes | 45 | 69% presenting iGAS, meningitis detected in 2 cases | N/A | Not informed |
Spain [39] | 2000–2021 | L. monocytogenes | 8152 | 50% decrease in hospitalizations in 2020 compared to 2019. Meningoencephalitis corresponds to 38.2% of cases | N/A | Decrease |
China [40] | 2017–2023 | CoNS, S. pneumoniae, E. coli, S. aureus, S. agalactiae, E. faecium, A. baumannii, E. faecalis, H. influenzae, K. pneumoniae | 5793 | 26.5% and 13.1% reduction in infections in the pediatric and adult population between 2019 and 2020 | p = 0.0039 | Decrease |
Etiological Agent | Transmission Route | Hypotheses |
---|---|---|
Neisseria meningitidis [5,6,25,26,27,28] | Droplets | Decrease in transmission due to public health measures; disruption on routine invasive disease surveillance. |
Haemophilus influenzae [5,6,28,29,38] | Droplets | Decrease in transmission due to public health measures; potential reduction in viral co-infections that facilitate bacterial infection; failure in Hib vaccination in 2020 and 2021. |
Streptococcus pneumoniae [5,6,27,28,29,30,31] | Droplets | Decrease in transmission due to public health measures. |
Streptococcus agalactiae [5,6,27,32] | Droplets and contact | No significant change observed. |
Streptococcus pyogenes [31,32,33,34,35] | Droplets and contact | Decrease in transmission due to public health measures. |
Escherichia coli [32,40] | Fecal–oral, healthcare-associated | Antibiotic use changes, immune system modulation, or altered hospital transmission. |
Listeria monocytogenes [39] | vertical transmission, contaminated food, contact | Decrease in transmission due to public health measures. |
Enterovirus [8,9,10,11,12,13,14] | Fecal–oral. Rarely droplets | Decrease in transmission due to public health measures. |
HSV-1 e HSV-2 [18] | Contact 1 | Not directly affected by COVID-19, but stress and immunosuppression could influence reactivation rates. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farias, L.A.B.G.; Weyne, L.S.; Landim, L.S.; de Holanda, P.E.L.; Santos, A.d.S.; Cavalcanti, L.P.d.G.; Costa, L.B.; Dantas de Melo, A.G.N.; Medeiros, M.S.; Girão, E.S.; et al. Alterations and Dynamics of Major Meningitis Etiological Agents During and Post-COVID-19 Pandemic: A Systematic Review. Trop. Med. Infect. Dis. 2025, 10, 81. https://doi.org/10.3390/tropicalmed10030081
Farias LABG, Weyne LS, Landim LS, de Holanda PEL, Santos AdS, Cavalcanti LPdG, Costa LB, Dantas de Melo AGN, Medeiros MS, Girão ES, et al. Alterations and Dynamics of Major Meningitis Etiological Agents During and Post-COVID-19 Pandemic: A Systematic Review. Tropical Medicine and Infectious Disease. 2025; 10(3):81. https://doi.org/10.3390/tropicalmed10030081
Chicago/Turabian StyleFarias, Luís Arthur Brasil Gadelha, Larissa Santos Weyne, Lenifer Siqueira Landim, Pablo Eliack Linhares de Holanda, Aliniana da Silva Santos, Luciano Pamplona de Góes Cavalcanti, Lourrany Borges Costa, Antonio Gutierry Neves Dantas de Melo, Melissa Soares Medeiros, Evelyne Santana Girão, and et al. 2025. "Alterations and Dynamics of Major Meningitis Etiological Agents During and Post-COVID-19 Pandemic: A Systematic Review" Tropical Medicine and Infectious Disease 10, no. 3: 81. https://doi.org/10.3390/tropicalmed10030081
APA StyleFarias, L. A. B. G., Weyne, L. S., Landim, L. S., de Holanda, P. E. L., Santos, A. d. S., Cavalcanti, L. P. d. G., Costa, L. B., Dantas de Melo, A. G. N., Medeiros, M. S., Girão, E. S., Coelho, T. M. S., & Perdigão Neto, L. V. (2025). Alterations and Dynamics of Major Meningitis Etiological Agents During and Post-COVID-19 Pandemic: A Systematic Review. Tropical Medicine and Infectious Disease, 10(3), 81. https://doi.org/10.3390/tropicalmed10030081