Antimicrobial Resistance and Its Impact on Food Safety Determinants Along the Beef Value Chain in Sub-Saharan Africa—A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Analysis Using the PAGER Framework
3. Results
3.1. Screening Results
3.2. Characteristics of Included Articles
3.3. Patterns: Determinants of AMR in the Beef Value Chain
3.4. Advances: Efforts to Combat AMR
3.5. Gaps: The Challenges in Tackling AMR
3.6. Evidence for Practice: What We Know and What Works
3.7. Research Recommendations: The Path Forward
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudson, J.A.; Frewer, L.J.; Jones, G.; Brereton, P.A.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131–147. [Google Scholar]
- Nastasijevic, I.; Proscia, F.; Jurica, K.; Veskovic-Moracanin, S. Tracking antimicrobial resistance along the meat chain: One health context. Food Rev. Int. 2024, 40, 2775–2809. [Google Scholar]
- Mshana, S.E.; Sindato, C.; Matee, M.I.; Mboera, L.E. Antimicrobial use and resistance in agriculture and food production systems in Africa: A systematic review. Antibiotics 2021, 10, 976. [Google Scholar] [CrossRef] [PubMed]
- Fasina, F.O.; Fasanmi, O.G.; Makonnen, Y.J.; Bebay, C.; Bett, B.; Roesel, K. The one health landscape in Sub-Saharan African countries. One Health 2021, 13, 100325. [Google Scholar] [CrossRef]
- Azabo, R.; Dulle, F.; Mshana, S.E.; Matee, M.; Kimera, S. Antimicrobial use in cattle and poultry production on occurrence of multidrug resistant Escherichia coli. A systematic review with focus on sub-Saharan Africa. Front. Vet. Sci. 2022, 9, 1000457. [Google Scholar]
- Jaja, I.F.; Jaja, C.-J.I.; Chigor, N.V.; Anyanwu, M.U.; Maduabuchi, E.K.; Oguttu, J.W.; Green, E. Antimicrobial resistance phenotype of Staphylococcus aureus and Escherichia coli isolates obtained from meat in the formal and informal sectors in South Africa. BioMed Res. Int. 2020, 2020, 3979482. [Google Scholar]
- Erdaw, M.M. Contribution, prospects and trends of livestock production in sub-Saharan Africa: A review. Int. J. Agric. Sustain. 2023, 21, 2247776. [Google Scholar] [CrossRef]
- Ijaz, M.; Yar, M.K.; Badar, I.H.; Ali, S.; Islam, M.S.; Jaspal, M.H.; Hayat, Z.; Sardar, A.; Ullah, S.; Guevara-Ruiz, D. Meat production and supply chain under COVID-19 scenario: Current trends and future prospects. Front. Vet. Sci. 2021, 8, 660736. [Google Scholar]
- Rekwot, G.; Abdulsalam, Z.; Sani, R.; Dung, D. Mapping of beef cattle value chain actors in selected states of North-West Zone, Nigeria. Niger. J. Anim. Sci. 2022, 24, 68–80. [Google Scholar]
- Tebug, S.F.; Mouiche, M.M.M.; Abia, W.A.; Teno, G.; Tiambo, C.K.; Moffo, F.; Awah-Ndukum, J. Antimicrobial use and practices by animal health professionals in 20 sub-Saharan African countries. Prev. Vet. Med. 2021, 186, 105212. [Google Scholar]
- Mubiru, S.; Marshall, K.; Lukuyu, B.A.; Oba, P.; Ahumuza, R.; Ouma, E.A. Beef Value Chain Situation Analysis for Uganda. 2023. Available online: https://www.ilri.org/knowledge/publications/beef-value-chain-situation-analysis-uganda (accessed on 3 January 2025).
- Nyokabi, N.S.; Lindahl, J.F.; Phelan, L.T.; Berg, S.; Gemechu, G.; Mihret, A.; Wood, J.L.; Moore, H.L. Exploring the composition and structure of milk and meat value chains, food safety risks and governance in the Addis Ababa and Oromia regions of Ethiopia. Front. Sustain. Food Syst. 2023, 7, 1085390. [Google Scholar] [CrossRef]
- Nyokabi, N.S.; Phelan, L.; Gemechu, G.; Berg, S.; Lindahl, J.F.; Mihret, A.; Wood, J.L.; Moore, H.L. From farm to table: Exploring food handling and hygiene practices of meat and milk value chain actors in Ethiopia. BMC Public Health 2023, 23, 899. [Google Scholar] [CrossRef] [PubMed]
- Mbatha, C. Livestock production and marketing for small emerging farmers in South Africa and Kenya: Comparative lessons. S. Afr. J. Agric. Ext. 2021, 49, 141–161. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Page, O. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist. Br. J. Sports Med. 2024, 1001, 58. [Google Scholar]
- Bradbury-Jones, C.; Aveyard, H.; Herber, O.R.; Isham, L.; Taylor, J.; O’malley, L. Scoping reviews: The PAGER framework for improving the quality of reporting. Int. J. Social. Res. Methodol. 2022, 25, 457–470. [Google Scholar] [CrossRef]
- Thomas, J.; Harden, A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med. Res. Methodol. 2008, 8, 45. [Google Scholar] [CrossRef]
- Mdegela, R.H.; Mwakapeje, E.R.; Rubegwa, B.; Gebeyehu, D.T.; Niyigena, S.; Msambichaka, V.; Nonga, H.E.; Antoine-Moussiaux, N.; Fasina, F.O. Antimicrobial use, residues, resistance and governance in the food and agriculture sectors, Tanzania. Antibiotics 2021, 10, 454. [Google Scholar] [CrossRef]
- Bilashoboka, E.; Mudenda, B.; Munyinda, N.; Moshi, F.V.; Kambarage, D.M. Determination of oxytetracycline residue levels in edible tissues of slaughtered cattle. Food Environ. Saf. J. 2019, 17, 4. [Google Scholar]
- Alhaji, N.B.; Odetokun, I.A.; Adamu, A.M.; Hassan, A.; Lawan, M.K.; Fasina, F.O. Antimicrobial usage and associated residues and resistance emergence in smallholder beef cattle production systems in Nigeria: A One Health challenge. Vet. Res. Commun. 2023, 47, 233–245. [Google Scholar] [CrossRef]
- Mouiche, M.M.M.; Okah-Nnane, N.H.; Moffo, F.; Djibo, I.; Mapiefou, N.P.; Mpouam, S.E.; Mfopit, Y.M.; Mingoas, J.-P.K.; Tebug, S.F.; Ndukum, J.A. Antibiotic Residues in Foods of Animal Origin in Cameroon: Prevalence, Consumers’ Risk Perceptions, and attitudes. J. Food Prot. 2024, 87, 100237. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, J.W.; Jacobs, J.; Ngogang, M.P.; Howland, O. Antibiotic use by poultry farmers in Kiambu County, Kenya: Exploring practices and drivers of potential overuse. Antimicrob. Resist. Infect. Control 2023, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Alhaji, N.; Adamu, A.; Odetokun, I.; Lawan, M.; Fasina, F. Practices of Antimicrobial Usage and Associated Resistance Emergence in Smallholder Beef Cattle Production Systems in Northern Nigeria: Drivers and One Health Challenge. Authorea Preprints. 2022. Available online: https://www.authorea.com/doi/full/10.22541/au.164864104.41945438 (accessed on 3 January 2025).
- Mankhomwa, J.; Tolhurst, R.; M’biya, E.; Chikowe, I.; Banda, P.; Mussa, J.; Mwasikakata, H.; Simpson, V.; Feasey, N.; MacPherson, E.E. A qualitative study of antibiotic use practices in intensive small-scale farming in urban and peri-urban blantyre, malawi: Implications for antimicrobial resistance. Front. Vet. Sci. 2022, 9, 876513. [Google Scholar]
- Jaja, I.F.; Oguttu, J.; Jaja, C.-J.I.; Green, E. Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. PLoS ONE 2020, 15, e0216914. [Google Scholar]
- Geresu, M.A.; Desta, W.Z. Carriage, Risk Factors, and Antimicrobial Resistance Patterns of Salmonella Isolates from Raw Beef in Jimma, Southwestern Ethiopia. Infect. Drug Resist. 2021, 14, 2349–2360. [Google Scholar] [CrossRef]
- Frumence, G.; Mboera, L.E.; Sindato, C.; Katale, B.Z.; Kimera, S.; Metta, E.; Durrance-Bagale, A.; Jung, A.-S.; Mshana, S.E.; Clark, T.G. The governance and implementation of the national action plan on antimicrobial resistance in Tanzania: A qualitative study. Antibiotics 2021, 10, 273. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Njoroge, S.M.; Momanyi, K.; Murungi, M.K.; Odinga, C.O.; Bor, N.; Ogendo, A.; Odaba, J.; Ogola, J.G.; Fèvre, E.M. The antimicrobial resistance landscape of slaughterhouses in western Kenya: A microbiological case study. One Health 2024, 19, 100899. [Google Scholar] [CrossRef]
- Matee, M.; Mshana, S.E.; Mtebe, M.; Komba, E.V.; Moremi, N.; Lutamwa, J.; Kapona, O.; Sekamatte, M.; Mboera, L.E. Mapping and gap analysis on antimicrobial resistance surveillance systems in Kenya, Tanzania, Uganda and Zambia. Bull. Natl. Res. Cent. 2023, 47, 12. [Google Scholar]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: A knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 2020, 15, e0220274. [Google Scholar]
- Bougnom, B.; Thiele-Bruhn, S.; Ricci, V.; Zongo, C.; Piddock, L. Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs). Sci. Total Environ. 2020, 698, 134201. [Google Scholar]
- The Fleming Fund Strengthening AMR Surveillance: Stories of National Progress in Africa and Asia. 2024. Available online: https://www.flemingfund.org/publications/strengthening-amr-surveillance-stories-of-national-progress-in-africa-and-asia/ (accessed on 30 January 2025).
- Makau, D.N.; Slizovskiy, I.; Obanda, V.; Noyes, N.R.; Johnson, J.R.; Oakes, M.; Travis, D.; VanderWaal, K.; Omondi, G.P. Factors influencing usage of antimicrobial drugs among pastoralists in Kenya. Trop. Anim. Health Prod. 2022, 54, 332. [Google Scholar] [PubMed]
- Nhokwara, S.M. Farmer Knowledge and Behavior Towards the Prevention, Control and Eradication of Bovine Theileriosis in Zimbabwe Principal Agent Problem and Animal Health Management. Ph.D. Thesis, Agriculture Obihiro University, Obihiro, Japan, 2024. [Google Scholar]
- Zaheer, R.; Cook, S.R.; Klima, C.L.; Stanford, K.; Alexander, T.; Topp, E.; Read, R.R.; McAllister, T.A. Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front. Microbiol. 2013, 4, 133. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [PubMed]
- FAO. The FAO Action Plan on Antimicrobial Resistance 2021–2025. Rome, Italy, 2021. Available online: https://doi.org/10.4060/cb5545en (accessed on 31 January 2025).
- Kumar, V.; Ahire, J.J.; Taneja, N.K. Advancing microbial food safety and hazard analysis through predictive mathematical modeling. Microbe 2024, 2, 100049. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1–19. [Google Scholar] [CrossRef]
- Davies, J. Origins and evolution of antibiotic resistance. Microbiologia 1996, 12, 9–16. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- WHO. Fact Sheet: Antimicrobial Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 31 January 2025).
- Fan, S.; Foster, D.; Miller, W.G.; Osborne, J.; Kathariou, S. Impact of ceftiofur administration in steers on the prevalence and antimicrobial resistance of Campylobacter spp. Microorganisms 2021, 9, 318. [Google Scholar] [CrossRef]
- ILRI. Review of Evidence on Antimicrobial Resistance and Animal Agriculture in Developing Countries. 2015. Available online: https://assets.publishing.service.gov.uk/media/57a0897e40f0b649740000e0/EoD_Consultancy_June15_Ag_Related_AMR.pdf (accessed on 31 January 2025).
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar]
- Kaur, K.; Singh, S.; Kaur, R. Impact of antibiotic usage in food-producing animals on food safety and possible antibiotic alternatives. Microbe 2024, 4, 100097. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies focused on antimicrobial resistance in the beef value chain, specifically in SSA. | Studies focused solely on AMR in human or environmental settings without reference to the beef value chain. |
Research assessing the impact of AMR on food safety risks, including contamination risks at various stages of the beef value chain (e.g., production, slaughter, processing, and distribution). | Research on the molecular aspects of AMR, such as genomics, without an explicit focus on food safety risks. |
Articles addressing factors such as antimicrobial use, production practices, and regulatory frameworks related to AMR and food safety. | Systematic reviews, meta-analyses, and secondary data sources were excluded from this review. |
Studies published in English. |
Category | Description |
---|---|
Study Characteristics | Basic citation details, study design, geographical location, and study design. |
Determinants of AMR * | Factors influencing AMR include antimicrobial use (types, administration methods, frequency), production practices (hygiene, veterinary care, biosecurity), market dynamics, environmental conditions, and socio-economic factors. |
Food Safety Impacts | Assessing the contamination risks and public health implications linked to AMR. |
Regulatory and Policy Frameworks | Outlining relevant regulations, enforcement levels, and international guidelines. |
Technological and Innovative Interventions | Innovations or technologies used to mitigate AMR in the beef value chain. |
Findings, Recommendations, and Study Limitations: | Summarizing the main findings, recommendations for policy or practice, and study limitations. |
First Author, Year | Country | Study Design | Determinants of AMR in the Beef Value Chain |
---|---|---|---|
Mdegela, 2021 [19] | Tanzania | Mixed-methods | Farm practices and the availability of antimicrobials in livestock farming |
Bilashoboka, 2019 [20] | Tanzania | Cross-sectional | Farmer non-compliance with veterinary drug withdrawal periods, driven by a lack of awareness and perceived economic losses, contributes to antimicrobial resistance, as evidenced by elevated oxytetracycline residues in some ready-to-eat beef. |
Alhaji, 2023 [21] | Nigeria | Cross-sectional | Antimicrobial use and misuse |
Mouiche, 2024 [22] | Cameroon | Cross-sectional | The overuse of antibiotics, disregard for the time required for withdrawal following antibiotic administration, and disregard for veterinarian advice |
Kariuki, 2023 [23] | Kenya | Qualitative | Antimicrobial use and misuse |
Alhaji, 2022 [24] | Nigeria | Cross-sectional | Production practices and animal health management |
Mankhomwa, 2022 [25] | Malawi | Qualitative | Production practices and animal health management |
Mubiru, 2023 [11] | Uganda | Mixed-methods | Farm practices and the availability of antimicrobials in livestock farming; market factors and informal beef trade |
Jaja, 2020 [26] | South Africa | Cross-sectional | Market factors and informal beef trade |
Geresu, 2021 [27] | Ethiopia | Cross-sectional | Production practices and animal health management |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musuka, G.; Machakwa, J.; Mano, O.; Iradukunda, P.G.; Gashema, P.; Moyo, E.; Nsengimana, A.; Manhokwe, S.; Dhliwayo, T.; Dzinamarira, T. Antimicrobial Resistance and Its Impact on Food Safety Determinants Along the Beef Value Chain in Sub-Saharan Africa—A Scoping Review. Trop. Med. Infect. Dis. 2025, 10, 82. https://doi.org/10.3390/tropicalmed10030082
Musuka G, Machakwa J, Mano O, Iradukunda PG, Gashema P, Moyo E, Nsengimana A, Manhokwe S, Dhliwayo T, Dzinamarira T. Antimicrobial Resistance and Its Impact on Food Safety Determinants Along the Beef Value Chain in Sub-Saharan Africa—A Scoping Review. Tropical Medicine and Infectious Disease. 2025; 10(3):82. https://doi.org/10.3390/tropicalmed10030082
Chicago/Turabian StyleMusuka, Godfrey, Jairus Machakwa, Oscar Mano, Patrick Gad Iradukunda, Pierre Gashema, Enos Moyo, Amon Nsengimana, Shepherd Manhokwe, Tapiwa Dhliwayo, and Tafadzwa Dzinamarira. 2025. "Antimicrobial Resistance and Its Impact on Food Safety Determinants Along the Beef Value Chain in Sub-Saharan Africa—A Scoping Review" Tropical Medicine and Infectious Disease 10, no. 3: 82. https://doi.org/10.3390/tropicalmed10030082
APA StyleMusuka, G., Machakwa, J., Mano, O., Iradukunda, P. G., Gashema, P., Moyo, E., Nsengimana, A., Manhokwe, S., Dhliwayo, T., & Dzinamarira, T. (2025). Antimicrobial Resistance and Its Impact on Food Safety Determinants Along the Beef Value Chain in Sub-Saharan Africa—A Scoping Review. Tropical Medicine and Infectious Disease, 10(3), 82. https://doi.org/10.3390/tropicalmed10030082