Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care
Abstract
:1. Introduction
2. Materials and Methods
3. From the Definition of Sepsis to the Use of Clinical Scores
4. Does the Magic Biomarker Exist?
4.1. C-Reactive Protein
4.2. Procalcitonin
4.3. Interleukin-6 and Interleukin-8
4.4. Presepsin
5. Blood Cultures Are the Diagnostic Gold Standard
5.1. Time to Positivity
5.2. Repeat Blood Cultures
5.3. Narrowing the Spectrum with PCR Assays
6. Antimicrobial Time Out and Automatic Stop Order (es. 48 h)
7. Shortest Effective Duration of Therapy
8. The Transition from Intravenous to Oral Treatment
9. The Role of Lumbar Puncture in the Evaluation for Neonatal Sepsis
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stocker, M.; Klingenberg, C.; Navér, L.; Nordberg, V.; Berardi, A.; el Helou, S.; Fusch, G.; Bliss, J.M.; Lehnick, D.; Dimopoulou, V.; et al. Less Is More: Antibiotics at the Beginning of Life. Nat. Commun. 2023, 14, 2423. [Google Scholar] [CrossRef]
- Prusakov, P.; Goff, D.A.; Wozniak, P.S.; Cassim, A.; Scipion, C.E.A.; Urzúa, S.; Ronchi, A.; Zeng, L.; Ladipo-Ajayi, O.; Aviles-Otero, N.; et al. A Global Point Prevalence Survey of Antimicrobial Use in Neonatal Intensive Care Units: The No-More-Antibiotics and Resistance (NO-MAS-R) Study. EClinicalMedicine 2021, 32, 100727. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.; Barday, M.; Okomo, U.; Dramowski, A.; Sharland, M.; Bekker, A. Early-versus Late-Onset Sepsis in Neonates—Time to Shift the Paradigm? Clin. Microbiol. Infect. 2023, 30, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Achten, N.B.; Klingenberg, C.; Benitz, W.E.; Stocker, M.; Schlapbach, L.J.; Giannoni, E.; Bokelaar, R.; Driessen, G.J.A.; Brodin, P.; Uthaya, S.; et al. Association of Use of the Neonatal Early-Onset Sepsis Calculator with Reduction in Antibiotic Therapy and Safety A Systematic Review and Meta-Analysis. JAMA Pediatr. 2019, 173, 1032–1034. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Hartnett, J.; Semova, G.; Murray, C.; Murphy, K.; Carroll, L.; Plapp, H.; Hession, L.; O’Toole, J.; McCollum, D.; et al. Neonatal Sepsis Definitions from Randomised Clinical Trials. Pediatr. Res. 2023, 93, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L. Defining Neonatal Sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Ross, R.K.; Mukhopadhyay, S.; Tribble, A.C.; Puopolo, K.M.; Gerber, J.S. Temporal Trends and Center Variation in Early Antibiotic Use Among Premature Infants. JAMA Netw. Open 2018, 1, e180164. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Banerjee, R.; Schwenk, H. Antibiotic Stewardship for the Neonatologist and Perinatologist. Clin. Perinatol. 2021, 48, 379–391. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Hofer, N.; Zacharias, E.; Müller, W.; Resch, B. Performance of the Definitions of the Systemic Inflammatory Response Syndrome and Sepsis in Neonates. J. Perinat. Med. 2012, 40, 587–590. [Google Scholar] [CrossRef]
- Bromiker, R.; Elron, E.; Klinger, G. Do Neonatal Infections Require a Positive Blood Culture? Am. J. Perinatol. 2020, 37, S18–S21. [Google Scholar] [CrossRef]
- Wynn, J.L.; Polin, R.A. A Neonatal Sequential Organ Failure Assessment Score Predicts Mortality to Late-Onset Sepsis in Preterm Very Low Birth Weight Infants. Pediatr. Res. 2020, 88, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, N.; Coggins, S.A.; Lewis, A.N.; Zeigler, A.; Cooksey, K.E.; Walker, L.A.; Husain, A.N.; De Jong, B.S.; Wallman-Stokes, A.; Alrifai, M.W.; et al. Evaluation of the Neonatal Sequential Organ Failure Assessment and Mortality Risk in Preterm Infants with Late-Onset Infection. JAMA Netw. Open 2021, 4, 36518. [Google Scholar] [CrossRef] [PubMed]
- Poggi, C.; Ciarcià, M.; Miselli, F.; Dani, C. Prognostic Accuracy of Neonatal SOFA Score versus SIRS Criteria in Preterm Infants with Late-Onset Sepsis. Eur. J. Pediatr. 2023, 182, 4731–4739. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Ioakeimidis, G.; Piovani, D.; Parastatidou, S.; Konstantinidi, A.; Tsantes, A.G.; Lampridou, M.; Houhoula, D.; Iacovidou, N.; Kokoris, S.; et al. Development and Validation of a Sepsis Diagnostic Scoring Model for Neonates with Suspected Sepsis. Front. Pediatr. 2022, 10, 1004727. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Stohr, W.; Plakka, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.; Balasegaram, M.; Ballot, D.; et al. Patterns of Antibiotic Use, Pathogens, and Prediction of Mortality in Hospitalized Neonates and Young Infants with Sepsis: A Global Neonatal Sepsis Observational Cohort Study (NeoOBS). PLoS Med. 2023, 20, e1004179. [Google Scholar] [CrossRef] [PubMed]
- Schmatz, M.; Srinivasan, L.; Grundmeier, R.W.; Elci, O.U.; Weiss, S.L.; Masino, A.J.; Tremoglie, M.; Ostapenko, S.; Harris, M.C. Surviving Sepsis in a Referral Neonatal Intensive Care Unit: Association between Time to Antibiotic Administration and In-Hospital Outcomes. J. Pediatr. 2020, 217, 59–65.e1. [Google Scholar] [CrossRef]
- Dong, Y.; Speer, C.P. Late-Onset Neonatal Sepsis: Recent Developments. Arch. Dis. Child Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef]
- Cantey, J.B.; Lee, J.H. Biomarkers for the Diagnosis of Neonatal Sepsis. Clin. Perinatol. 2021, 48, 215–227. [Google Scholar] [CrossRef]
- Pons, S.; Trouillet-Assant, S.; Subtil, F.; Abbas-Chorfa, F.; Cornaton, E.; Berthiot, A.; Galletti, S.; Plat, A.; Rapin, S.; Trapes, L.; et al. Performance of 11 Host Biomarkers Alone or in Combination in the Diagnosis of Late-Onset Sepsis in Hospitalized Neonates: The Prospective EMERAUDE Study. Biomedicines 2023, 11, 1703. [Google Scholar] [CrossRef]
- Maddaloni, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Caoci, S.; Bersani, I.; Ronchetti, M.P.; Auriti, C. The Emerging Role of Presepsin (P-Sep) in the Diagnosis of Sepsis in the Critically Ill Infant: A Literature Review. Int. J. Mol. Sci. 2021, 22, 12154. [Google Scholar] [CrossRef]
- Maddaloni, C.; De Rose, D.U.; Perulli, M.; Martini, L.; Bersani, I.; Campi, F.; Savarese, I.; Dotta, A.; Paola, M.; Cinzia, R. Perinatal Asphyxia Does Not Influence Presepsin Levels in Neonates: A Prospective Study. Acta Paediatr. 2023, 113, 453–460. [Google Scholar] [CrossRef]
- Stocker, M.; Giannoni, E. Game Changer or Gimmick: Inflammatory Markers to Guide Antibiotic Treatment Decisions in Neonatal Early-Onset Sepsis. Clin. Microbiol. Infect. 2023, 30, 22–27. [Google Scholar] [CrossRef]
- Brown, J.V.E.; Meader, N.; Wright, K.; Cleminson, J.; McGuire, W. Assessment of C-Reactive Protein Diagnostic Test Accuracy for Late-Onset Infection in Newborn Infants: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2020, 174, 260–268. [Google Scholar] [CrossRef]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D.; Harris-Haman, P.A. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef]
- Stocker, M.; Van Herk, W.; Helou, S.; Dutta, S.; Fontana, M.S.; Schuerman, F.A.B.A.; Groot, R.K.V.D.T. Procalcitonin-Guided Decision Making for Duration of Antibiotic Therapy in Neonates with Suspected Early-Onset Sepsis: A Multicentre, Randomised Controlled Trial (NeoPIns). Lancet 2017, 390, 871–881. [Google Scholar] [CrossRef] [PubMed]
- NICE Guidelines Neonatal Infection: Antibiotics for Prevention and Treatment. Neonatal Infection: Antibiotics for Prevention and Treatment 2021. Available online: https://www.nice.org.uk/guidance/ng195 (accessed on 20 January 2024).
- Meem, M.; Modak, J.K.; Mortuza, R.; Morshed, M.; Islam, M.S.; Saha, S.K. Biomarkers for Diagnosis of Neonatal Infections: A Systematic Analysis of Their Potential as a Point-of-Care Diagnostics. J. Glob. Health 2011, 1, 201–209. [Google Scholar]
- Ehl, S.; Gering, B.; Bartmann, P.; Högel, J.; Pohlandt, F. C-Reactive Protein Is a Useful Marker for Guiding Duration of Antibiotic Therapy in Suspected Neonatal Bacterial Infection. Pediatrics 1997, 99, 216–221. [Google Scholar] [CrossRef]
- Benitz, W.E.; Yan, M.Y.; Madan, A.; Ramachandra, P. Serial Serum C-Reactive Protein Levels in the Diagnosis of Neonatal Infection. Pediatrics 1998, 102, e41. [Google Scholar] [CrossRef] [PubMed]
- University of Pennsylvania Study “Using Biomarkers to Optimize Antibiotic Strategies in Sepsis” (ID: NCT02207114). Available online: https://clinicaltrials.gov/study/NCT02207114 (accessed on 19 December 2023).
- Aloisio, E.; Dolci, A.; Panteghini, M. Procalcitonin: Between Evidence and Critical Issues. Clin. Chim. Acta 2019, 496, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Assistance Publique—Hôpitaux de Paris Study “Procalcitonin and Duration of AntiBiotherapy in Late Onset Sepsis of Neonate (PROABIS)” (ID: NCT03730636). Available online: https://clinicaltrials.gov/study/NCT03730636 (accessed on 19 December 2023).
- Eichberger, J.; Resch, B. Reliability of Interleukin-6 Alone and in Combination for Diagnosis of Early Onset Neonatal Sepsis: Systematic Review. Front. Pediatr. 2022, 10, 840778. [Google Scholar] [CrossRef]
- Küng, E.; Unterasinger, L.; Waldhör, T.; Berger, A.; Wisgrill, L. Cut-off Values of Serum Interleukin-6 for Culture-Confirmed Sepsis in Neonates. Pediatr. Res. 2023, 93, 1969–1974. [Google Scholar] [CrossRef]
- Ng, P.C.; Cheng, S.H.; Chui, K.M.; Fok, T.F.; Wong, M.Y.; Wong, W.; Wong, R.P.O.; Cheung, K.L. Diagnosis of Late Onset Neonatal Sepsis with Cytokines, Adhesion Molecule, and C-Reactive Protein in Preterm Very Low Birthweight Infants. Arch. Dis. Child Fetal Neonatal Ed. 1997, 77, 6–9. [Google Scholar] [CrossRef]
- Chauhan, N.; Tiwari, S.; Jain, U. Potential Biomarkers for Effective Screening of Neonatal Sepsis Infections: An Overview. Microb. Pathog. 2017, 107, 234–242. [Google Scholar] [CrossRef]
- Zhou, M.; Cheng, S.; Yu, J.; Lu, Q. Interleukin-8 for Diagnosis of Neonatal Sepsis: A Meta-Analysis. PLoS ONE 2015, 10, e0127170. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.R.; Steinbach, G.; Kron, M.; Pohlandt, F. Interleukin-8: A Valuable Tool to Restrict Antibiotic Therapy in Newborn Infants. Acta Paediatr. 2001, 90, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Carpio, R.; Zapata, J.; Spanuth, E.; Hess, G. Utility of Presepsin (SCD14-ST) as a Diagnostic and Prognostic Marker of Sepsis in the Emergency Department. Clin. Chim. Acta 2015, 450, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Capossela, L.; Margiotta, G.; Ferretti, S.; Curatola, A.; Bertolaso, C.; Pansini, V.; Di Sarno, L.; Gatto, A. Presepsin as a Diagnostic Marker of Sepsis in Children and Adolescents: A Short Critical Update. Acta Biomed. 2023, 94, e2023062. [Google Scholar] [CrossRef]
- Bellos, I.; Fitrou, G.; Pergialiotis, V.; Thomakos, N.; Perrea, D.N.; Daskalakis, G. The Diagnostic Accuracy of Presepsin in Neonatal Sepsis: A Meta-Analysis. Eur. J. Pediatr. 2018, 177, 625–632. [Google Scholar] [CrossRef]
- Pietrasanta, C.; Ronchi, A.; Vener, C.; Poggi, C.; Ballerini, C.; Testa, L.; Colombo, R.M.; Spada, E.; Dani, C.; Mosca, F.; et al. Presepsin (Soluble Cd14 Subtype) as an Early Marker of Neonatal Sepsis and Septic Shock: A Prospective Diagnostic Trial. Antibiotics 2021, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Poggi, C.; Bianconi, T.; Gozzini, E.; Generoso, M.; Dani, C. Presepsin for the Detection of Late-Onset Sepsis in Preterm Newborns. Pediatrics 2015, 135, 68–75. [Google Scholar] [CrossRef]
- Sabry, J.H.; Elfeky, O.A.; Elsadek, A.E.; Eldaly, A.A. Presepsin as an Early Reliable Diagnostic and Prognostic Marker of Neonatal Sepsis. Int. J. Adv. Res. 2016, 4, 1538–1549. [Google Scholar] [CrossRef]
- Miyosawa, Y.; Akazawa, Y.; Kamiya, M.; Nakamura, C.; Takeuchi, Y.; Kusakari, M.; Nakamura, T. Presepsin as a Predictor of Positive Blood Culture in Suspected Neonatal Sepsis. Pediatr. Int. 2018, 60, 157–161. [Google Scholar] [CrossRef]
- Fabre, V.; Carroll, K.C.; Cosgrove, S.E. Blood Culture Utilization in the Hospital Setting: A Call for Diagnostic Stewardship. J. Clin. Microbiol. 2022, 60, e01005-21. [Google Scholar] [CrossRef]
- Huber, S.; Hetzer, B.; Crazzolara, R.; Orth-Höller, D. The Correct Blood Volume for Paediatric Blood Cultures: A Conundrum? Clin. Microbiol. Infect. 2020, 26, 168–173. [Google Scholar] [CrossRef]
- Hajjar, N.; Ting, J.Y.; Shah, P.S.; Lee, K.-S.; Dunn, M.S.; Srigley, J.A.; Khurshid, F. Blood Culture Collection Practices in NICU; A National Survey. Paediatr. Child Health 2023, 28, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Coggins, S.A.; Harris, M.C.; Srinivasan, L. Dual-Site Blood Culture Yield and Time to Positivity in Neonatal Late-Onset Sepsis. Arch. Dis. Child Fetal Neonatal Ed. 2022, 107, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.R.; Cassat, J.E.; Lewno, M.J. Should Antibiotics Be Discontinued at 48 Hours for Negative Late-Onset Sepsis Evaluations in the Neonatal Intensive Care Unit? J. Perinatol. 2002, 22, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Briker, S.M.; Flannery, D.D.; Dhudasia, M.B.; Coggins, S.A.; Woodford, E.; Walsh, E.M.; Li, S.; Puopolo, K.M.; Kuzniewicz, M.W. Time to Positivity of Blood Cultures in Neonatal Late-Onset Bacteraemia. Arch. Dis. Child Fetal Neonatal Ed. 2022, 107, 583–588. [Google Scholar] [CrossRef]
- Guerti, K.; Devos, H.; Ieven, M.M.; Mahieu, L.M. Time to Positivity of Neonatal Blood Cultures: Fast and Furious? J. Med. Microbiol. 2011, 60, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, S. Time to Positivity and Antibiotic Sensitivity of Neonatal Blood Cultures. J. Glob. Infect. Dis. 2017, 9, 102–107. [Google Scholar] [CrossRef]
- Dierig, A.; Berger, C.; Agyeman, P.K.A.; Bernhard-Stirnemann, S.; Giannoni, E.; Stocker, M.; Posfay-Barbe, K.M.; Niederer-Loher, A.; Kahlert, C.R.; Donas, A.; et al. Time-to-Positivity of Blood Cultures in Children with Sepsis. Front. Pediatr. 2018, 6, 222. [Google Scholar] [CrossRef]
- Mokrani, D.; Chommeloux, J.; Pineton de Chambrun, M.; Hékimian, G.; Luyt, C.E. Antibiotic Stewardship in the ICU: Time to Shift into Overdrive. Ann. Intensive Care 2023, 13, 39. [Google Scholar] [CrossRef]
- Oeser, C.; Pond, M.; Butcher, P.; Bedford Russell, A.; Henneke, P.; Laing, K.; Planche, T.; Heath, P.T.; Harris, K. PCR for the detection of pathogens in neonatal early onset sepsis. PLoS ONE 2020, 15, e0226817. [Google Scholar] [CrossRef]
- Peri, A.M.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Performance of BioFire Blood Culture Identification 2 Panel (BCID2) for the Detection of Bloodstream Pathogens and Their Associated Resistance Markers: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. BMC Infect. Dis. 2022, 22, 794. [Google Scholar] [CrossRef]
- Graff, K.E.; Palmer, C.; Anarestani, T.; Velasquez, D.; Hamilton, S.; Pretty, K.; Parker, S.; Dominguez, S.R. Clinical Impact of the Expanded BioFire Blood Culture Identification 2 Panel in a U.S. Children’s Hospital. Microbiol. Spectr. 2021, 9, 1110–1128. [Google Scholar] [CrossRef]
- Berinson, B.; Both, A.; Berneking, L.; Christner, M.; Lütgehetmann, M.; Aepfelbacher, M.; Rohde, H. Usefulness of Biofire Filmarray Bcid2 for Blood Culture Processing in Clinical Practice. J. Clin. Microbiol. 2021, 59, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Messacar, K.; Hurst, A.L.; Child, J.; Campbell, K.; Palmer, C.; Hamilton, S.; Dowell, E.; Robinson, C.C.; Parker, S.K.; Dominguez, S.R. Clinical Impact and Provider Acceptability of Real-Time Antimicrobial Stewardship Decision Support for Rapid Diagnostics in Children with Positive Blood Culture Results. J. Pediatr. Infect. Dis. Soc. 2017, 6, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.D.; Chao, T.; Pettengill, M.A. Modern Blood Culture: Management Decisions and Method Options. Clin. Lab Med. 2020, 40, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e00292-22. [Google Scholar] [CrossRef]
- Scheer, C.S.; Fuchs, C.; Gründling, M.; Vollmer, M.; Bast, J.; Bohnert, J.A.; Zimmermann, K.; Hahnenkamp, K.; Rehberg, S.; Kuhn, S.O. Impact of Antibiotic Administration on Blood Culture Positivity at the Beginning of Sepsis: A Prospective Clinical Cohort Study. Clin. Microbiol. Infect. 2019, 25, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, D. Unnatural Selection: Reducing Antibiotic Resistance in Neonatal Units. Arch. Dis. Child Fetal Neonatal Ed. 2006, 91, 72–75. [Google Scholar] [CrossRef]
- Cantey, J.B.; Sánchez, P.J. Prolonged Antibiotic Therapy for “Culture-Negative” Sepsis in Preterm Infants: It’s Time to Stop! J. Pediatr. 2011, 159, 707–708. [Google Scholar] [CrossRef]
- Falciglia, G.; Hageman, J.R.; Schreiber, M.; Alexander, K. Antibiotic Therapy and Early Onset Sepsis. Neoreviews 2012, 13, e86–e93. [Google Scholar] [CrossRef]
- Ho, T.; Dukhovny, D.; Zupancic, J.A.F.; Goldmann, D.A.; Horbar, J.D.; Pursley, D.M. Choosing Wisely in Newborn Medicine: Five Opportunities to Increase Value. Pediatrics 2015, 136, e482–e489. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC) Core Elements of Hospital Antibiotic Stewardship Programs. Available online: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html (accessed on 22 January 2024).
- Tolia, V.N.; Desai, S.; Qin, H.; Rayburn, P.D.; Poon, G.; Murthy, K.; Ellsbury, D.L.; Chiruvolu, A. Implementation of an Automatic Stop Order and Initial Antibiotic Exposure in Very Low Birth Weight Infants. Am. J. Perinatol. 2017, 34, 105–110. [Google Scholar] [CrossRef]
- Astorga, M.C.; Piscitello, K.J.; Menda, N.; Ebert, A.M.; Ebert, S.C.; Porte, M.A.; Kling, P.J. Antibiotic Stewardship in the Neonatal Intensive Care Unit: Effects of an Automatic 48-Hour Antibiotic Stop Order on Antibiotic Use. J. Pediatr. Infect. Dis. Soc. 2019, 8, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Wozniak, P.S.; Pruszynski, J.E.; Sánchez, P.J. Reducing Unnecessary Antibiotic Use in the Neonatal Intensive Care Unit (SCOUT): A Prospective Interrupted Time-Series Study. Lancet Infect. Dis. 2016, 16, 1178–1184. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Q.; Yuan, H.; Wang, L. Implementation of the Smart Use of Antibiotics Program to Reduce Unnecessary Antibiotic Use in a Neonatal ICU: A Prospective Interrupted Time-Series Study in a Developing Country. Crit. Care Med. 2019, 47, E1–E7. [Google Scholar] [CrossRef]
- Wang, B.; Li, G.; Jin, F.; Weng, J.; Peng, Y.; Dong, S.; Liu, J.; Luo, J.; Wu, H.; Shen, Y.; et al. Effect of Weekly Antibiotic Round on Antibiotic Use in the Neonatal Intensive Care Unit as Antibiotic Stewardship Strategy. Front. Pediatr. 2020, 8, 604244. [Google Scholar] [CrossRef]
- Singh, N.; Gray, J.E. Antibiotic Stewardship in NICU: De-Implementing Routine CRP to Reduce Antibiotic Usage in Neonates at Risk for Early-Onset Sepsis. J. Perinatol. 2021, 41, 2488–2494. [Google Scholar] [CrossRef]
- Muller, M.R.; Mahadeo, A.M.; Mayne, J.P.; Mennella, J.M.; Mun, P.A.; Tucker, R.; Bliss, J.M. Decreased Antibiotic Exposure for Suspected Early-Onset Sepsis in the Neonatal Intensive Care Unit Through Implementation of an Antimicrobial Time-Out. J. Pediatr. Pharmacol.Ther. 2022, 27, 746–749. [Google Scholar] [CrossRef]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal Sepsis in South Asia: Huge Burden and Spiralling Antimicrobial Resistance. BMJ 2019, 364, k5314. [Google Scholar] [CrossRef]
- Duan, H.; Yu, L.; Tian, F.; Zhai, Q.; Fan, L.; Chen, W. Antibiotic-Induced Gut Dysbiosis and Barrier Disruption and the Potential Protective Strategies. Crit. Rev. Food Sci. Nutr. 2022, 62, 1427–1452. [Google Scholar] [CrossRef]
- Islam, K.; Khatun, N.; Das, K.; Paul, S.; Ghosh, T.; Nayek, K. Ten- vs. 14-Day Antibiotic Therapy for Culture-Positive Neonatal Sepsis. J. Trop. Pediatr. 2023, 69, fmad036. [Google Scholar] [CrossRef] [PubMed]
- Aljarbou, A.; Cuello, C.; Leslie, A.T.F.S. Short Course of Intravenous Antibiotics in the Treatment of Uncomplicated Proven Neonatal Bacterial Sepsis: A Systematic Review. Acta Paediatr. 2023, 113, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Nangia, S.; Jajoo, M.; Gathwala, G.; Nesargi, S.; Sundaram, M.; Kumar, P.; Saili, A.; Kumar, D.; Dalal, P.; et al. Comparison of Efficacy of a 7-Day versus a 14-Day Course of Intravenous Antibiotics in the Treatment of Uncomplicated Neonatal Bacterial Sepsis: Study Protocol of a Randomized Controlled Non-Inferiority Trial. Trials 2021, 22, 859. [Google Scholar] [CrossRef]
- Keij, F.M.; Kornelisse, R.F.; Hartwig, N.G.; Reiss, I.K.M.; Allegaert, K.; Tramper-Stranders, G.A. Oral Antibiotics for Neonatal Infections: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2019, 74, 3150–3161. [Google Scholar] [CrossRef] [PubMed]
- Keij, F.M.; Kornelisse, R.F.; Hartwig, N.G.; van der Sluijs-Bens, J.; van Beek, R.H.T.; van Driel, A.; van Rooij, L.G.M.; van Dalen-Vink, I.; Driessen, G.J.A.; Kenter, S.; et al. Efficacy and Safety of Switching from Intravenous to Oral Antibiotics (Amoxicillin–Clavulanic Acid) versus a Full Course of Intravenous Antibiotics in Neonates with Probable Bacterial Infection (RAIN): A Multicentre, Randomised, Open-Label, Non-Inferiorit. Lancet Child Adolesc. Health 2022, 6, 799–809. [Google Scholar] [CrossRef]
- Aleem, S.; Greenberg, R.G. When to include a lumbar puncture in the evaluation for neonatal sepsis. Neoreviews 2019, 3, e124–e134. [Google Scholar] [CrossRef]
- Smith, P.B.; Garges, H.P.; Cotton, C.M.; Walsh, T.J.; Clark, R.H.; Benjamin, D.K., Jr. Meningitis in preterm neonates: Importance of cerebrospinal fluid parameters. Am. J. Perinatol. 2008, 25, 421–426. [Google Scholar] [CrossRef]
- Bedetti, L.; Miselli, F.; Minotti, C.; Latorre, G.; Loprieno, S.; Foglianese, A.; Laforgia, N.; Perrone, B.; Ciccia, M.; Capretti, M.G.; et al. Lumbar Puncture and Meningitis in Infants with Proven Early- or Late-Onset Sepsis: An Italian Prospective Multicenter Observational Study. Microorganisms 2023, 11, 1546. [Google Scholar] [CrossRef] [PubMed]
- Malbon, K.; Mohan, R.; Nicholl, R. Should a neonate with possible late onset infection always have a lumbar puncture? Arch. Dis. Child. 2006, 91, 75–76. [Google Scholar] [CrossRef]
- Ting, J.Y.; Autmizguine, J.; Dunn, M.S.; Choudhury, J.; Blackburn, J.; Gupta-Bhatnagar, S.; Assen, K.; Emberley, J.; Khan, S.; Leung, J.; et al. Practice Summary of Antimicrobial Therapy for Commonly Encountered Conditions in the Neonatal Intensive Care Unit: A Canadian Perspective. Front Pediatr. 2022, 10, 894005. [Google Scholar] [CrossRef] [PubMed]
- Mathur, N.B.; Kharod, P.; Kumar, S. Evaluation of duration of Antibiotic Therapy in Neonatal Bacterial Meningitis: A randomized controlled trial. J. Trop. Pediatr. 2015, 61, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Bucci, S.; Coltella, L.; Martini, L.; Santisi, A.; De Rose, D.U.; Piccioni, L.; Campi, F.; Ronchetti, M.P.; Longo, D.; Lucignani, G.; et al. Clinical and Neurodevelopmental Characteristics of Enterovirus and Parechovirus Meningitis in Neonates. Front. Pediatr. 2022, 10, 881516. [Google Scholar] [CrossRef] [PubMed]
- AIFA—Italian Agency for Drugs: The Medicines Utilisation Monitoring Centre Antibiotics. In: National Report on Drugs Use in Italy. 2021. Available online: https://www.aifa.gov.it/-/l-uso-dei-farmaci-in-italia-rapporto-osmed-2021 (accessed on 13 January 2024).
- Fleiss, N.; Hooven, T.A.; Polin, R.A. Can We Back off Using Antibiotics in the NICU? Semin. Fetal Neonatal Med. 2021, 26, 101217. [Google Scholar] [CrossRef]
- Cohen, R.; Romain, O.; Tauzin, M.; Gras-Leguen, C.; Raymond, J.; Butin, M. Neonatal Bacterial Infections: Diagnosis, Bacterial Epidemiology and Antibiotic Treatment. Infect. Dis. Now 2023, 53, 104793. [Google Scholar] [CrossRef]
nSOFA | Respiratory score | 0 | 2 | 4 | 6 | 8 |
criteria | Not intubated or intubated, SpO2/FiO2 ≥ 300 | Intubated, SpO2/FiO2 <300 | Intubated, SpO2/FiO2 <200 | Intubated, SpO2/FiO2 <150 | Intubated, SpO2/FiO2 <100 | |
Cardiovascular score | 0 | 1 | 2 | 3 | 4 | |
criteria | No inotropes, no systemic steroids | No inotropes, systemic steroid treatment | One inotrope, no systemic steroids | At least 2 inotropes, or one inotrope and systemic steroids | At least two inotropes and systemic steroids | |
Hematologic score | 0 | 1 | 2 | 3 | NA | |
criteria | Platelet count ≥ 150 × 109 L | Platelet count 100–149 × 109 L | Platelet count <100 × 109 L | Platelet count <50 × 109 L |
Factors | Severity Score Points | |
---|---|---|
Birthweight | <1 kg | 2 |
1.0–2.9 kg | 1 | |
>3 kg | 0 | |
In-hospital time | ≤10 days: 1 | 1 |
>10 days | 0 | |
Gestational age | <37 weeks | 1 |
Congenital anomalies | Yes | 1 |
No | 0 | |
Maximum respiratory support | Oxygen supplementation | 2 |
Non-invasive ventilation | 3 | |
Invasive ventilation | 3 | |
Body temperature | <35.5 °C | 1 |
35.6–37.9 °C | 0 | |
≥38–<39 °C | 1 | |
≥39 °C | 2 | |
Abdominal distension | Yes | 1 |
No | 0 | |
Lethargy, no or reduced movement | No | 0 |
Lethargy only | 1 | |
No/reduced movements | 2 | |
Feeding difficulties | Yes | 1 |
No | 0 | |
Evidence of shock | Yes | 1 |
No | 0 | |
Maximum number of score possible | 16 |
Factors | Severity Score Points | |
---|---|---|
Maximum respiratory support | Oxygen supplementation | 2 |
Non-invasive ventilation | 3 | |
Invasive ventilation | 3 | |
Body temperature | <35.5 °C | 1 |
35.6–37.9 °C | 0 | |
≥38–<39 °C | 1 | |
≥39 °C | 2 | |
Abdominal distension | Yes | 1 |
No | 0 | |
Lethargy, no or reduced movement | No | 0 |
Lethargy only | 1 | |
No/reduced movements | 2 | |
Feeding difficulties | Yes | 1 |
No | 0 | |
Evidence of shock | Yes | 1 |
No | 0 | |
Cyanosis | Yes | 1 |
No | 0 | |
Maximum number of score possible | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rose, D.U.; Ronchetti, M.P.; Santisi, A.; Bernaschi, P.; Martini, L.; Porzio, O.; Dotta, A.; Auriti, C. Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care. Trop. Med. Infect. Dis. 2024, 9, 63. https://doi.org/10.3390/tropicalmed9030063
De Rose DU, Ronchetti MP, Santisi A, Bernaschi P, Martini L, Porzio O, Dotta A, Auriti C. Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care. Tropical Medicine and Infectious Disease. 2024; 9(3):63. https://doi.org/10.3390/tropicalmed9030063
Chicago/Turabian StyleDe Rose, Domenico Umberto, Maria Paola Ronchetti, Alessandra Santisi, Paola Bernaschi, Ludovica Martini, Ottavia Porzio, Andrea Dotta, and Cinzia Auriti. 2024. "Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care" Tropical Medicine and Infectious Disease 9, no. 3: 63. https://doi.org/10.3390/tropicalmed9030063
APA StyleDe Rose, D. U., Ronchetti, M. P., Santisi, A., Bernaschi, P., Martini, L., Porzio, O., Dotta, A., & Auriti, C. (2024). Stop in Time: How to Reduce Unnecessary Antibiotics in Newborns with Late-Onset Sepsis in Neonatal Intensive Care. Tropical Medicine and Infectious Disease, 9(3), 63. https://doi.org/10.3390/tropicalmed9030063