Machine Learning Methods in CFD for Turbomachinery: A Review
Abstract
:1. Introduction
- Fuel flexibility (methane, hydrogen, ammonia, oxi-combustion, and a blend of these with low NO emissions),
- Part load performance (when operating below 50% of nominal power),
- Fast start-up and shut-down (which should take less than a minute to allow interfacing with intermittent renewables),
- Better efficiency (higher firing temperatures and pressures and improved materials properties),
- Reduced maintenance (for operation in remote areas close to wind or solar farms),
- Improved interface with bottom cycles (operated with steam or organic fluids),
- Interfacing with Carbon Capture and Sequestration (CCS).
2. Application of Machine Learning Methods to CFD for Turbomachinery Design
- How can ML indicate ways to improve accuracy at various levels of physics resolution? With reference to Figure 1a, DNS can be used to improve the subgrid-scale (SGS) model in LES, which can be used to improve Reynolds-averaged models in (U)RANS. In particular, we focus on Artificial Neural Networks (ANNs) and Gene Expression Programming (GEP) based methods that use data from DNS or LES to improve the accuracy of (U)RANS in some respect.
- Are ML methods a viable strategy for reduction of computational cost associated with a single CFD simulation by accelerating the convergence of solvers?
- Uncertainty quantification (UQ) is employed during the design of new products to determine the impact of different sources of uncertainty on the performance of a design. Computing the statistical moments of an uncertain Quantity of Interest (QoI) does not generally admit analytical solutions, but instead requires meta-models that are not only accurate but can scale well with the number of uncertain system parameters. These models must also be able to handle large, heterogeneous datasets containing data with varying levels of uncertainty. Furthermore, the results of the uncertainty analysis must be clearly communicated to multi-disciplinary teams who are stakeholders in the project. How can ML based methods be used to address these challenges?
- Finally, is the model able to incorporate multi-fidelity data and help match scarce experimental measurements affected by errors? Is the model generalisable to a range of flow features (for instance adverse or favourable pressure gradients), geometries (wall-bounded vs. wall-driven) and flow conditions (statistically steady vs. statistically periodic)?
3. Turbulence Modeling with Machine Learning
- Those that find corrective functions for the Reynolds stress or other quantities of interest and apply these in one predictive step to the baseline model. This involves introducing the corrected Reynolds stress into lower-order closures (DNS to LES or HLES, and LES to (U)RANS) as a static field from which the velocity and pressure field can be converged.
- Those that make inherent changes to lower-order closures (mostly (U)RANS), either through terms in the turbulence equations or by learning nonlinear models for the Reynolds stresses based on mean flow features, as discussed in [16]. These models are then inferenced at every iteration in a subsequent (U)RANS calculation.
3.1. The Energy Spectrum in Turbomachinery
3.2. DNS to Improve LES
3.3. DNS and LES to Improve HLES
3.4. DNS and LES to Improve (U)RANS
4. Acceleration of the CFD Solver
4.1. Spatial Discretization Acceleration
4.2. Temporal Discretization Acceleration
4.3. Reduced-Order Models
5. Uncertainty Quantification and Management
5.1. Quantifying Aleatoric Uncertainty
5.2. Quantifying Epistemic Uncertainty
5.3. Quantifying Mixed Uncertainty and Visualisation
5.4. Multi-Fidelity Methods
6. New Forms of Machine Learnt Tools
- (a)
- Obey the basic conservation principles of the time-averaged Navier–Stokes equations (PDE);
- (b)
- Match inlet operating conditions (IC);
- (c)
- Match boundary and geometrical conditions (BC);
- (d)
- Obey the fundamental turbulence constraints for theory (see, for example, turbulence invariants formulated by Lumley [118]), (TC);
- (e)
- Match measurements obtained from experiments (ME).
7. Summary and Outlook
- In a design optimization loop, the quality of a design is measured by interrogating an estimator, in this case, CFD. The quality and robustness of the optimal solution are dictated by the reliability of CFD, the accuracy of which can be boosted by ML.
- Each design iteration, especially when dealing with multidisciplinary verification, is very computationally intensive. ML can improve optimizer convergence by reducing the number of iterations and, more importantly, the cost associated with each design performance analysis.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gas Turbine World 2020 GTW Handbook; Pequot Publishing Inc.: Fairfield, CT, USA, 2020.
- Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 26 October 2021).
- Michelassi, V.; Ling, J. Challenges and opportunities for artificial intelligence and high-fidelity simulations in turbomachinery applications: A perspective. J. Glob. Power Propuls. Soc. 2021, 1–14. [Google Scholar] [CrossRef]
- Denton, J.D.; Dawes, W.N. Computational fluid dynamics for turbomachinery. J. Mech. Eng. Sci. 1998, 213, 107–124. [Google Scholar] [CrossRef]
- Sandberg, R.D.; Michelassi, V. The current state of high-fidelity simulations for main gas path turbomachinery components and their industrial impact. Flow Turbul. Combust. 2019, 102, 797–848. [Google Scholar] [CrossRef]
- Laskowski, G.; Kopriva, J.; Michelassi, V.; Shankaran, S.; Paliath, U.; Bhaskaran, R.; Wang, Q.; Talnikar, C.; Wang, Z.; Jia, F. Future Directions of High Fidelity CFD for Aerothermal Turbomachinery Analysis and Design. In Proceedings of the 46th AIAA Fluid Dynamics Conference, Washington, DC, USA, 13–17 June 2016; p. 3322. [Google Scholar]
- Akolekar, H.D.; Sandberg, R.D.; Hutchins, N.; Michelassi, V.; Laskowski, G. Machine-Learnt Turbulence Closures for Low-Pressure Turbines with Unsteady Inflow Conditions. J. Turbomach. 2019, 141, 101009. [Google Scholar] [CrossRef]
- Michelassi, V.; Chen, L.; Pichler, R.; Sandberg, R.D.; Bhaskaran, R. High-fidelity simulations of low-pressure turbines: Effect of flow coefficient and reduced frequency on losses. ASME J. Turbomach. 2016, 138, 111006. [Google Scholar] [CrossRef]
- Pichler, R.; Michelassi, V.; Sandberg, R.D.; Ong, J. Highly Resolved LES Study of Gap Size Effect on Low-Pressure Turbine Stage. ASME J. Turbomach. 2017, 140, 021003. [Google Scholar]
- Meloni, R.; Ceccherini, G.; Michelassi, V.; Riccio, G. Analysis of the self-excited dynamics of a heavy-duty annular combustion chamber by large-eddy simulation. J. Eng. Gas Turbines Power 2019, 141, 111016. [Google Scholar] [CrossRef]
- Sandberg, R.D.; Michelassi, V. Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models. Annu. Rev. Fluid Mech. 2022, 54, 255–285. [Google Scholar] [CrossRef]
- Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 2014. [Google Scholar]
- Jones, W.; Launder, B. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transf. 1973, 16, 1119–1130. [Google Scholar] [CrossRef]
- Lopez, D.I.; Ghisu, T.; Shahpar, S. Global Optimisation of a Transonic Fan Blade Through AI-Enabled Active Subspaces. J. Turbomach. 2021, 14, 011013. [Google Scholar]
- Gaymann, A.; Montomoli, F.; Pietropaoli, M. Robust Fluid Topology Optimization Using Polynomial Chaos Expansions: TOffee. In Turbo Expo: Power for Land, Sea, and Air; Turbomachinery: London, UK, 2018; Volume 2D. [Google Scholar] [CrossRef]
- Gatski, T.; Speziale, C. On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 1993, 254, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Akolekar, H.D.; Weatheritt, J.; Michelassi, V.; Sandberg, R.D. RANS turbulence model development using CFD-driven machine learning. J. Comput. Phys. 2020, 411, 109413. [Google Scholar] [CrossRef] [Green Version]
- Wallin, S.; Johansson, A. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 2000, 403, 89–132. [Google Scholar] [CrossRef]
- Park, J.; Choi, H. Toward neural-network-based large eddy simulation: Application to turbulent channel flow. J. Fluid Mech. 2021, 914, A16. [Google Scholar] [CrossRef]
- Weatheritt, J.; Sandberg, R.D. Hybrid Reynolds-Averaged/Large-Eddy Simulation Methodology from Symbolic Regression: Formulation and Application. AIAA J. 2017, 55, 3734–3746. [Google Scholar] [CrossRef]
- Weatheritt, J.; Sandberg, R.D. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship. J. Comput. Phys. 2016, 325, 22–37. [Google Scholar] [CrossRef]
- Pope, S.B. A more general effective-viscosity hypothesis. J. Fluid Mech. 1975, 72, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Weatheritt, J.; Pichler, R.; Sandberg, R.D.; Laskowski, G.; Michelassi, V. Machine Learning for Turbulence Model Development Using a High-Fidelity HPT Cascade Simulation. In Proceedings of the Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Weatheritt, J.; Zhao, Y.; Sandberg, R.D.; Mizukami, S.; Tanimoto, K. Data-driven scalar-flux model development with application to jet in cross flow. Int. J. Heat Mass Transf. 2019, 147, 118931. [Google Scholar] [CrossRef]
- Hammond, J.; Montomoli, F.; Pietropaoli, M.; Sandberg, R.; Michelassi, V. Machine Learning for the Development of Data Driven Turbulence Closures in Coolant Systems. J. Turbomach. 2022, 144, 081003. [Google Scholar] [CrossRef]
- Frey Marioni, Y.; Ortiz, E.A.D.T.; Cassinelli, A.; Montomoli, F.; Adami, P.; Vazquez, R. A machine learning approach to improve turbulence modelling from DNS data using neural networks. Int. J. Turbomach. Propuls. Power 2021, 6, 17. [Google Scholar] [CrossRef]
- Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 2016, 807, 155–166. [Google Scholar] [CrossRef]
- Weatheritt, J.; Sandberg, R.D.; Ling, J.; Saez, G.; Bodart, J. A Comparative Study of Contrasting Machine Learning Frameworks Applied to RANS Modeling of Jets in Crossflow. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. GT2017-63403. [Google Scholar]
- Tucker, P. Computation of unsteady turbomachinery flows: Part1–Progress and Challenges. Prog. Aerosp. Sci. 2011, 47, 522–545. [Google Scholar] [CrossRef]
- Michelassi, V.; Pichler, R.; Chen, L.; Sandberg, R.D. Compressible Direct Numerical Simulation of Low-Pressure Turbines: Part II—Effect of Inflow Disturbances. ASME J. Turbomach. 2015, 137, 071005-1–071005-12. [Google Scholar] [CrossRef]
- Lav, C.; Sandberg, R.D.; Philip, J. A framework to develop data-driven turbulence models for flows with organised unsteadiness. J. Comp. Phys. 2019, 383, 148–165. [Google Scholar] [CrossRef]
- Van de Wall, A.G.; Kadambi, J.R.; Adamczyk, J.J. A transport model for the deterministic stresses associated with turbomachinery blade row interactions. J. Turbomach. 2000, 122, 593–603. [Google Scholar] [CrossRef]
- Hammond, J.; Pietropaoli, M.; Montomoli, F. Topology optimisation of turbulent flow using data-driven modelling. Struct. Multidiscip. Optim. 2022, 65, 49. [Google Scholar] [CrossRef]
- Ali, Z.; Tyacke, J.; Tucker, P.G.; Shahpar, S. Block Topology Generation for Structured Multi-block Meshing with Hierarchical Geometry Handling. Procedia Eng. 2016, 163, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Toosi, S.; Larsson, J. Grid-adaptation and convergence-verification in large eddy simulation: A robust and systematic approach. In Proceedings of the 2018 Fluid Dynamics Conference, Atlanta, GA, USA, 25–29 June 2018; pp. 1–24. [Google Scholar] [CrossRef]
- Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 2018, 30, 055106. [Google Scholar] [CrossRef] [Green Version]
- Tyacke, J.; Vadlamani, N.R.; Trojak, W.; Watson, R.; Ma, Y.; Tucker, P.G. Turbomachinery simulation challenges and the future. Prog. Aerosp. Sci. 2019, 110, 100554. [Google Scholar] [CrossRef]
- Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine learning—Accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101784118. [Google Scholar] [CrossRef]
- Gao, H.; Sun, L.; Wang, J.X. Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels. Phys. Fluids 2021, 33, 073603. [Google Scholar] [CrossRef]
- Fotiadis, S.; Pignatelli, E.; Valencia, M.L.; Cantwell, C.; Storkey, A.; Bharath, A.A. Comparing Recurrent and Convolutional Neural Networks for Predicting Wave Propagation. arXiv 2020, arXiv:2002.08981. [Google Scholar]
- Sorteberg, W.E.; Garasto, S.; Cantwell, C.C.; Bharath, A.A. Approximating the Solution of Surface Wave Propagation Using Deep Neural Networks. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 3–8 December 2018; pp. 246–256. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Long, M.; Wang, J.; Yu, P.S. PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. Int. Conf. Mach. Learn. 2018, 11, 8122–8131. [Google Scholar]
- Thuerey, N.; Weissenow, K.; Prantl, L.; Hu, X. Deep learning methods for reynolds-averaged navier–stokes simulations of airfoil flows. AIAA J. 2020, 58, 25–36. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Fischer, P. FlowNet: Learning Optical Flow with Convolutional Networks. arXiv 2015, arXiv:1504.06852. [Google Scholar]
- De Bézenac, E.; Pajot, A.; Gallinari, P. Deep learning for physical processes: Incorporating prior scientific knowledge. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC, Canada, 30 April–3 May 2018; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Vinuesa, R.; Brunton, S.L. The Potential of Machine Learning to Enhance Computational Fluid Dynamics. arXiv 2021, arXiv:2110.02085. [Google Scholar]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef] [Green Version]
- Obiols-Sales, O.; Vishnu, A.; Malaya, N.; Chandramowliswharan, A. CFDNet: A deep learning-based accelerator for fluid simulations. In Proceedings of the International Conference on Supercomputing, Barcelona, Spain, 29 June–2 July 2020. [Google Scholar] [CrossRef]
- Leer, M.; Kempf, A. Fast Flow Field Estimation for Various Applications with A Universally Applicable Machine Learning Concept. Flow Turbul. Combust. 2021, 107, 175–200. [Google Scholar] [CrossRef]
- Bertini, F.; Credi, M.; Marconcini, M.; Giovannini, M. A Path Toward the Aerodynamic Robust Design of Low Pressure Turbines. J. Turbomach. 2012, 135, 021018. [Google Scholar] [CrossRef]
- Satish, T.; Murthy, R.; Singh, A. Analysis of uncertainties in measurement of rotor blade tip clearance in gas turbine engine under dynamic condition. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 228, 652–670. [Google Scholar] [CrossRef]
- Montomoli, F.; Massini, M.; Salvadori, S. Geometrical uncertainty in turbomachinery: Tip gap and fillet radius. Comput. Fluids 2011, 46, 362–368. [Google Scholar] [CrossRef]
- Notaristefano, A.; Gaetani, P.; Dossena, V.; Fusetti, A. Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes. J. Turbomach. 2021, 143, 091001. [Google Scholar] [CrossRef]
- Montomoli, F.; Carnevale, M.; Massini, M.; D’Ammaro, A.; Salvadori, S. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines; Springer: London, UK, 2015. [Google Scholar]
- Sepe, M.; Graziano, A.; Badora, M.; Di Stazio, A.; Bellani, L.; Compare, M.; Zio, E. A physics-informed machine learning framework for predictive maintenance applied to turbomachinery assets. J. Glob. Power Propuls. Soc. 2021, 1–15. [Google Scholar] [CrossRef]
- Gottschalk, H.; Saadi, M.; Doganay, O.T.; Klamroth, K.; Schmitz, S. Adjoint Method to Calculate the Shape Gradients of Failure Probabilities for Turbomachinery Components. In Turbo Expo: Power for Land, Sea, and Air; Turbomachinery: London, UK, 2018; Volume 7A. [Google Scholar] [CrossRef]
- Eldred, M.; Burkardt, J. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.; Beard, B. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [Google Scholar]
- Knio, O.M.; Maître, O.P.L. Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 2006, 38, 616–640. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Hu, J.; Hu, Y. Surrogate modeling of high-dimensional problems via data-driven polynomial chaos expansions and sparse partial least square. Comput. Methods Appl. Mech. Eng. 2020, 364, 112906. [Google Scholar] [CrossRef]
- Salis, C.; Zygiridis, T. Dimensionality Reduction of the Polynomial Chaos Technique Based on the Method of Moments. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2349–2353. [Google Scholar] [CrossRef]
- Papageorgiou, A.K.; Papoutsis-Kiachagias, E.M.; Giannakoglou, K.C. Development and assessment of an intrusive polynomial chaos expansion-based continuous adjoint method for shape optimization under uncertainties. Int. J. Numer. Methods Fluids 2022, 94, 59–75. [Google Scholar] [CrossRef]
- Chatzimanolakis, M.; Kantarakias, K.D.; Asouti, V.; Giannakoglou, K. A painless intrusive polynomial chaos method with RANS-based applications. Comput. Methods Appl. Mech. Eng. 2019, 348, 207–221. [Google Scholar] [CrossRef]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Krahl, R.; Durst, F.; Zenger, C. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 2007, 8, N32. [Google Scholar] [CrossRef]
- Gorlé, C.; Emory, M.; Larsson, J.; Iaccarino, G. Epistemic Uncertainty Quantification for RANS Modeling of the Flow over a Wavy Wall; Annual Research Briefs; Center for Turbulence Research: Stanford, CA, USA, 2012; pp. 81–91. [Google Scholar]
- Emory, M.; Larsson, J.; Iaccarino, G. Modeling of structural uncertainties in Reynolds-averaged Navier–Stokes closures. Phys. Fluids 2013, 25, 110822. [Google Scholar] [CrossRef]
- Heyse, J.F.; Mishra, A.A.; Iaccarino, G. Estimating RANS model uncertainty using machine learning. J. Glob. Power Propuls. Soc. 2021, 1–14. [Google Scholar] [CrossRef]
- Cheung, S.H.; Oliver, T.A.; Prudencio, E.E.; Prudhomme, S.; Moser, R.D. Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 2011, 96, 1137–1149. [Google Scholar] [CrossRef]
- Oliver, T.A.; Moser, R.D. Bayesian uncertainty quantification applied to RANS turbulence models. J. Phys. Conf. Ser. 2011, 318, 042032. [Google Scholar] [CrossRef] [Green Version]
- Oliver, T.; Moser, R. Uncertainty Quantification for RANS Turbulence Model Predictions. In APS Division of Fluid Dynamics Meeting Abstracts; American Physical Society: College Park, MD, USA, 2009; Available online: http://meetings.aps.org/link/BAPS.2009.DFD.LC.4 (accessed on 2 February 2022).
- Xiao, H.; Wu, J.L.; Wang, J.X.; Sun, R.; Roy, C. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. J. Comput. Phys. 2016, 324, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Edeling, W.N.; Cinnella, P.; Dwight, R.P.; Bijl, H. Bayesian estimates of parameter variability in the k-ϵ turbulence model. J. Comput. Phys. 2014, 258, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Edeling, W.; Cinnella, P.; Dwight, R.P. Predictive RANS simulations via Bayesian model-scenario averaging. J. Comp. Phys. 2014, 275, 65–91. [Google Scholar] [CrossRef] [Green Version]
- Li, J.P.; Zeng, F.Z.; Chen, S.S.; Zhang, K.L.; Yan, C. Bayesian model evaluation of three k–ω turbulence models for hypersonic shock wave–boundary layer interaction flows. Acta Astronaut. 2021, 189, 143–157. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, J.X.; Ghanem, R.G. A random matrix approach for quantifying model-form uncertainties in turbulence modeling. Comput. Methods Appl. Mech. Eng. 2017, 313, 941–965. [Google Scholar] [CrossRef] [Green Version]
- Dow, E.; Wang, Q. Quantification of structural uncertainties in the k-ω turbulence model. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011. [Google Scholar] [CrossRef] [Green Version]
- Tracey, B.D.; Duraisamy, K.; Alonso, J.J. A machine learning strategy to assist turbulence model development. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; p. 1287. [Google Scholar]
- Parish, E.J.; Duraisamy, K. A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 2016, 305, 758–774. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Duraisamy, K. Using field inversion to quantify functional errors in turbulence closures. Phys. Fluids 2016, 28, 045110. [Google Scholar] [CrossRef]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence Modeling in the Age of Data. Ann. Rev. Fluid Mech. 2019, 51, 357–377. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Cinnella, P. Quantification of model uncertainty in RANS simulations: A review. Prog. Aerosp. Sci. 2019, 108, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Geneva, N.; Zabaras, N. Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks. J. Comput. Phys. 2019, 383, 125–147. [Google Scholar] [CrossRef] [Green Version]
- McKeand, A.M.; Gorguluarslan, R.M.; Choi, S.K. Stochastic analysis and validation under aleatory and epistemic uncertainties. Reliab. Eng. Syst. Saf. 2021, 205, 107258. [Google Scholar] [CrossRef]
- Pepper, N.; Montomoli, F.; Sharma, S. Data fusion for Uncertainty Quantification with Non-Intrusive Polynomial Chaos. Comput. Methods Appl. Mech. Eng. 2021, 374, 113577. [Google Scholar] [CrossRef]
- He, Q. Model validation based on probability boxes under mixed uncertainties. Adv. Mech. Eng. 2019, 11, 1687814019847411. [Google Scholar] [CrossRef]
- Ling, J.; Templeton, J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty. Phys. Fluids 2015, 27, 085103. [Google Scholar] [CrossRef]
- Freeman, R. 1—New welding techniques for aerospace materials. In Welding and Joining of Aerospace Materials, 2nd ed.; Woodhead Publishing Series in Welding and Other Joining Technologies; Chaturvedi, M., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 1–19. [Google Scholar] [CrossRef]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Mach. Learn. 2021, 110, 457–506. [Google Scholar] [CrossRef]
- Psaros, A.F.; Meng, X.; Zou, Z.; Guo, L.; Karniadakis, G.E. Uncertainty Quantification in Scientific Machine Learning: Methods, Metrics, and Comparisons. arXiv 2022, arXiv:2201.07766. [Google Scholar]
- McCroskey, W. A critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil; Technical Report; National Aeronautics and Space Administration: Moffett Field, CA, USA, 1987. [Google Scholar]
- Mavris, D.; DeLaurentis, D. Methodology for Examining the Simultaneous Impact of Requirements, Vehicle Characteristics, and Technologies on Military Aircraft Design. ICAS 2000, 144, 1–12. [Google Scholar]
- Saravi, M.; Newnes, L.; Mileham, A.; Goh, Y. Estimating Cost at the Conceptual Design Stage to Optimize Design in terms of Performance and Cost. In Collaborative Product and Service Life Cycle Management for a Sustainable World; Advanced Concurrent Engineering; Curran, R., Chou, S., Trappey, A., Eds.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Xie, R.; Chen, M.; Liu, W.; Jian, H.; Shi, Y. Technologies for Turbomachinery in a Life Cycle Perspective: A Review. Sustainability 2021, 13, 2495. [Google Scholar] [CrossRef]
- Babuška, I.; Nobile, F.; Tempone, R. Reliability of computational science. Numer. Methods Partial. Differ. Equ. 2007, 23, 753–784. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 425–464. [Google Scholar] [CrossRef]
- Forrester, A.I.; Sóbester, A.; Keane, A.J. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 3251–3269. [Google Scholar] [CrossRef]
- Eldred, M.S.; Ng, L.W.T.; Barone, M.F.; Domino, S.P. Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models. In Handbook of Uncertainty Quantification; Ghanem, R., Higdon, D., Owhadi, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 991–1040. [Google Scholar]
- Yan, L.; Zhou, T. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems. J. Comput. Phys. 2019, 381, 110–128. [Google Scholar] [CrossRef] [Green Version]
- Giles, M.B. Multilevel Monte Carlo methods. Acta Numer. 2015, 24, 259–328. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, Q.J. Knowledge-based neural models for microwave design. IEEE Trans. Microw. Theory Tech. 1997, 45, 2333–2343. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Karniadakis, G.E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 2021, 425, 109913. [Google Scholar] [CrossRef]
- Pepper, N.; Gaymann, A.; Sharma, S.; Montomoli, F. Local bi-fidelity field approximation with Knowledge Based Neural Networks for Computational Fluid Dynamics. Sci. Rep. 2021, 11, 14459. [Google Scholar] [CrossRef]
- Laurenceau, J.; Sagaut, P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging. AIAA J. 2008, 46, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Song, L.; Guo, Z.; Li, J. Transfer Optimization in Accelerating the Design of Turbomachinery Cascades. In Turbo Expo: Power for Land, Sea, and Air; Turbomachinery: London, UK, 2020; Volume 2D. [Google Scholar] [CrossRef]
- Han, Z.H.; Zimmermann, R.; Goretz, S. A New Cokriging Method for Variable-Fidelity Surrogate Modeling of Aerodynamic Data. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar] [CrossRef] [Green Version]
- Rumpfkeil, M.; Yamazaki, W.; Dimitri, M. A Dynamic Sampling Method for Kriging and Cokriging Surrogate Models. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Elsheikh, A.H. A machine learning approach for efficient uncertainty quantification using multiscale methods. J. Comput. Phys. 2018, 354, 493–511. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.C.; Alber, M.; Tepole, A.B.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; et al. Multiscale modeling meets machine learning: What can we learn? Arch. Comput. Methods Eng. 2021, 28, 1017–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trehan, S.; Durlofsky, L. Machine-learning-based modeling of coarse-scale error, with application to uncertainty quantification. Comput. Geosci. 2018, 22, 1093–1113. [Google Scholar] [CrossRef]
- Lye, K.O.; Mishra, S.; Molinaro, R. A multi-level procedure for enhancing accuracy of machine learning algorithms. Eur. J. Appl. Math. 2021, 32, 436–469. [Google Scholar] [CrossRef]
- Jabarullah Khan, N.K.; Elsheikh, A.H. A machine learning based hybrid multi-fidelity multi-level Monte Carlo method for uncertainty quantification. Front. Environ. Sci. 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Lengani, D.; Simoni, D.; Pichler, R.; Sandberg, R.D.; Michelassi, V.; Bertini, F. On the Identification and Decomposition of the Unsteady Losses in a Turbine Cascade. J. Turbomach. 2019, 141, 031005. [Google Scholar] [CrossRef]
- Denton, J. The 1993 IGTI Scholar Lecture: Loss Mechanics in Turbomachines. ASME J. Turbomach. 1993, 115, 621–656. [Google Scholar] [CrossRef]
- Leggett, J.; Priebe, S.; Shabbir, A.; Michelassi, V.; Sandberg, R.; Richardson, E. LES Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences with Free Stream Disturbances. ASME J. Turbomach. 2018, 7, 071005. [Google Scholar] [CrossRef] [Green Version]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. arXiv 2021, arXiv:2105.09506. [Google Scholar] [CrossRef]
- Lumley, J. Toward a turbulent constitutive relation. J. Fluid Mech. 1970, 41, 413–434. [Google Scholar] [CrossRef]
- Eivazi, H.; Tahani, M.; Schlatter, P.; Vinuesa, R. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. arXiv 2021, arXiv:2107.10711. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Hammond, J.; Pepper, N.; Montomoli, F.; Michelassi, V. Machine Learning Methods in CFD for Turbomachinery: A Review. Int. J. Turbomach. Propuls. Power 2022, 7, 16. https://doi.org/10.3390/ijtpp7020016
Hammond J, Pepper N, Montomoli F, Michelassi V. Machine Learning Methods in CFD for Turbomachinery: A Review. International Journal of Turbomachinery, Propulsion and Power. 2022; 7(2):16. https://doi.org/10.3390/ijtpp7020016
Chicago/Turabian StyleHammond, James, Nick Pepper, Francesco Montomoli, and Vittorio Michelassi. 2022. "Machine Learning Methods in CFD for Turbomachinery: A Review" International Journal of Turbomachinery, Propulsion and Power 7, no. 2: 16. https://doi.org/10.3390/ijtpp7020016
APA StyleHammond, J., Pepper, N., Montomoli, F., & Michelassi, V. (2022). Machine Learning Methods in CFD for Turbomachinery: A Review. International Journal of Turbomachinery, Propulsion and Power, 7(2), 16. https://doi.org/10.3390/ijtpp7020016