Big Data in Criteria Selection and Identification in Managing Flood Disaster Events Based on Macro Domain PESTEL Analysis: Case Study of Malaysia Adaptation Index
Abstract
:1. Introduction
2. Background of Study
2.1. Malaysia Adaptation Index
- Improve state preparedness and reduce the vulnerability in various climate change sectors, such as food, water management, health, ecosystem, infrastructure, economic, governance and social.
- Public and private investment can be developed, executed, and managed strategically for physical and infrastructure projects.
- Revise and update National Climate Adaptation policy and plan, best management practices, standard operating procedures, technical guide and manual with comprehensive, collective, accurate, reliable, and up-to-date information.
- Data and information—ability to provide comprehensive and collective information and data as input plan for adaptation and mitigation plan.
- Asset and resource management—improve efficiency and effectiveness of asset and resource management.
- Reduce risk and impact—ability to prevent, reduce and rescue high-risk areas from climate change impacts.
- Reduce loss and life—ability to identify and reduce losses (lives, properties, and ecosystem) in the event of disasters.
- Data management policy and governance—improve open data, data sharing, data quality and data retention initiatives of government ministries and agencies.
2.2. MAIN Challenges and Issues
2.3. Current MAIN Criteria
3. Methodology
- Author’s name;
- Article title;
- MCDA technique;
- DMP phase;
- Criteria employed;
- Type of flood measures;
- Type of decision goals.
3.1. Thematic Analysis
3.1.1. Criteria Analysis
- Phase 1: Remove duplication criteria.
- Phase 2: Create a theme for criteria.
- Phase 3: Identify distinct criteria.
- Phase 4: Clustering criteria according to PESTEL domain.
3.1.2. Flood Measures Analysis
3.1.3. Decision Goal Analysis
4. Analysis and Results
4.1. Macro Domain (PESTEL Framework) Criteria Analysis
4.2. Flood Measures Analysis
4.3. Decision Goals Analysis
- Flood measures
- Flood disaster history;
- Future flood risk area;
- Risk assessment;
- Data accessibility;
- Data availability;
- Implementation capabilities.
- Diverse decision goals
- Risk assessment based on geographical location, social and economic impacts;
- Future flood management plan;
- Increase flood measures effectiveness and efficiency based on the area’s risk assessment.
4.4. Decision Analysis
5. Discussion: Suggestions for Improvement
5.1. Criteria Selection for Flood Management Plan
- Criteria selection based on the relative importance of each sector;
- Incorporating PESTEL criteria into each sector to establish collective and comprehensive criteria options;
- Incorporating macro domain criteria in each phase of DMP based on the MAIN index for managing water-related disasters;
- Incorporating MAIN index and PESTEL criteria for decision goals in the flood management plan.
5.2. Flood Management Plan
- Determine location at risk which requires additional and immediate attention for flood management plan based on MAIN’s index vulnerability and readiness;
- Determine which additional criteria could be incorporated with the existing MAIN criteria to improve assessment;
- Increasing criteria number on each sector to improve flood management plan;
- Determine DMP’s importance phase based on MAIN assessment.
5.3. Use of MCDA Method
5.4. Proposed Framework: MCDA Application for Flood Disaster Management Based on PESTEL Framework
- Identifying the macro domain criteria which are mostly influenced and impactful;
- Identifying and choosing the criteria within each macro domain criteria that highly impact and influence;
- Identifying and prioritising the macro domain criteria that have the highest impact and influence.
5.5. Potential Future Research
- A review of the current MAIN criteria used to calculate the vulnerability, readiness scores and adaptation index. The aim is to improve the criteria selection by incorporating macro domain criteria for an inclusive decision.
- Develop flood forecast maps for high-risk locations based on the MAIN index, improve and revise criteria. The aim is to facilitate more thorough and collaborative decision making.
- Bank criteria—a data repository of criteria (current and possible) that potentially can be used in flood management planning. The aim is to ensure data readiness and availability in the MAIN assessment.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Noble, I.; Hellmann, J.; Coffee, J.; Murillo, M.; Chawla, N. University of Notre Dame Global Adaptation Index Country Index Technical Report. 2015. Available online: https://gain.nd.edu/assets/254377/nd_gain_technical_document_2015.pdf (accessed on 2 January 2022).
- Abdullah, M.F.; Siraj, S.; Hodgett, R.E.J.W. An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events. Water 2021, 13, 1358. [Google Scholar] [CrossRef]
- Kar, A.K.; Lohani, A.K.; Goel, N.K.; Roy, G.P. Rain gauge network design for flood forecasting using multi-criteria decision analysis and clustering techniques in lower Mahanadi river basin, India. J. Hydrol.-Reg. Stud. 2015, 4, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Hou, Z.C. Multicriterion decision making for flood control operations: Theory and applications. J. Am. Water Resour. Assoc. 2004, 40, 67–76. [Google Scholar] [CrossRef]
- Zhu, F.L.; Zhong, P.A.; Sun, Y.M. Multi-criteria group decision making under uncertainty: Application in reservoir flood control operation. Environ. Model. Softw. 2018, 100, 236–251. [Google Scholar] [CrossRef]
- Zhu, F.L.; Zhong, P.A.; Xu, B.; Wu, Y.N.; Zhang, Y. A multi-criteria decision-making model dealing with correlation among criteria for reservoir flood control operation. J. Hydroinform. 2016, 18, 531–543. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Goharian, E. Comparing Machine Learning and Decision Making Approaches to Forecast Long Lead Monthly Rainfall: The City of Vancouver, Canada. Hydrology 2018, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Zeyaeyan, S.; Fattahi, E.; Ranjbar, A.; Vazifedoust, M. Classification of Rainfall Warnings Based on the TOPSIS Method. Climate 2017, 5, 33. [Google Scholar] [CrossRef]
- Lim, K.S.; Lee, D.R. The spatial MCDA approach for evaluating flood damage reduction alternatives. KSCE J. Civ. Eng. 2009, 13, 359–369. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P. Interval-Valued Intuitionistic Fuzzy WASPAS Method: Application in Reservoir Flood Control Management Policy. Group Decis. Negotiat. 2018, 27, 1047–1078. [Google Scholar] [CrossRef]
- Radmehr, A.; Araghinejad, S. Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making. Water Resour. Manag. 2015, 29, 4427–4445. [Google Scholar] [CrossRef]
- Rahimi, S.; Roodposhti, M.S.; Abbaspour, R.A. Using combined AHP-genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environ. Earth Sci. 2014, 72, 1979–1992. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhou, J.Z.; Huang, K.D.; Dai, L.; Zha, G.; Chen, L.; Qin, H. Risk Assessment and Decision-Making Based on Mean-CVaR-Entropy for Flood Control Operation of Large Scale Reservoirs. Water 2019, 11, 649. [Google Scholar] [CrossRef] [Green Version]
- Chandrawati, T.B.; Ratna, A.A.P.; Sari, R.F. Path Selection using Fuzzy Weight Aggregated Sum Product Assessment. Int. J. Comput. Commun. Control 2020, 15, 1–19. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, R.; Barrett, D.; Gao, L.; Zhou, M.W.; Renzullo, L.; Emelyanova, I. A spatial assessment framework for evaluating flood risk under extreme climates. Sci. Total Environ. 2015, 538, 512–523. [Google Scholar] [CrossRef]
- Lyu, H.M.; Shen, S.L.; Zhou, A.A.; Yang, J. Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Space Technol. 2019, 84, 31–44. [Google Scholar] [CrossRef]
- Memon, N.; Patel, D.P.; Bhatt, N.; Patel, S.B. Integrated framework for flood relief package (FRP) allocation in semiarid region: A case of Rel River flood, Gujarat, India. Nat. Hazards 2020, 100, 279–311. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, G.; Unver, M.; Temel Gencer, C. Evaluation of the Global Warming Impacts Using a Hybrid Method Based on Fuzzy Techniques: A Case Study in Turkey. Gazi Univ. J. Sci. 2016, 29, 883–894. [Google Scholar]
- Samanta, S.; Koloa, C.; Pal, D.K.; Palsamanta, B. Flood Risk Analysis in Lower Part of Markham River Based on Multi-Criteria Decision Approach (MCDA). Hydrology 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.F.; Yi, S.Z.; Tang, Z.Q. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci. Total Environ. 2017, 599, 1034–1046. [Google Scholar] [CrossRef]
- Andrade, C.; Rodrigues, S.; Corte-Real, J.A. Preliminary Assessment of Flood Hazard in Nabao River Basin Using an Analytical Hierarchy Process. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 13–18 September 2018; Volume 1978. [Google Scholar]
- Xiao, Y.F.; Yi, S.Z.; Tang, Z.Q. A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment. Water Resour. Manag. 2018, 32, 3317–3335. [Google Scholar] [CrossRef]
- Ghaleno, M.R.D.; Meshram, S.G.; Alvandi, E. Pragmatic approach for prioritization of flood and sedimentation hazard potential of watersheds. Soft Comput. 2020, 24, 15701–15714. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Boulomytis, V.T.G.; Zuffo, A.C.; Gireli, T.Z. Multi-Criteria Decision Making for the Assessment of Coastal Flood Vulnerability. In Proceedings of the World Environmental and Water Resources Congress 2015, Austin, TX, USA, 17–21 May 2015; pp. 1248–1255. [Google Scholar]
- Kanani-Sadat, Y.; Arabsheibani, R.; Karimipour, F.; Nasseri, M. A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J. Hydrol. 2019, 572, 17–31. [Google Scholar] [CrossRef]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Ozturk, D.; Batuk, F. Implementation of GIS-Based Multicriteria Decision Analysis with VB in ArcGIS. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 1023–1042. [Google Scholar] [CrossRef]
- Rahman, M.R.; Saha, S.K. Remote Sensing, Spatial Multi Criteria Evaluation (SMCE) and Analytical Hierarchy Process (AHP) in Optimal Cropping Pattern Planning for a Flood Prone Area. J. Spat. Sci. 2008, 53, 161–177. [Google Scholar] [CrossRef]
- Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; Parahyba, R.D.V.; Fernandes, L.F.S.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.Q.; Zhang, H.; Yi, S.Z.; Xiao, Y.F. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. J. Hydrol. 2018, 558, 144–158. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Yi, S.Z.; Tang, Z.Q. GIS-based Multi-criteria Analysis Method for Flood Risk Assessment under Urbanization. In Proceedings of the 2016 24th International Conference on Geoinformatics, Galway, Ireland, 14–20 August 2016. [Google Scholar]
- Akay, H.; Baduna Koçyiğit, M. Flash flood potential prioritization of sub-basins in an ungauged basin in Turkey using traditional multi-criteria decision-making methods. Soft Comput. 2020, 24, 14251–14263. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Pham, Q.B.; Vojtek, M.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Nguyen, H.Q.; Ahmad, A.; Ghorbani, M.A. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecol. Indic. 2020, 117, 106620. [Google Scholar] [CrossRef]
- Sekovski, I.; Del Rio, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982. [Google Scholar] [CrossRef]
- Hong, C.Y.; Chang, H. Residents’ perception of flood risk and urban stream restoration using multi-criteria decision analysis. River Res. Appl. 2020, 36, 2078–2088. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kotter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 104982. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Akter, T. Participatory floodplain management in the Red River Basin, Canada. Annu. Rev. Control 2006, 30, 183–192. [Google Scholar] [CrossRef]
- Seo, J.P.; Cho, W.; Cheong, T.S. Development of priority setting process for the small stream restoration projects using multi criteria decision analysis. J. Hydroinform. 2015, 17, 211–225. [Google Scholar] [CrossRef]
- Levy, J.K. Multiple criteria decision making and decision support systems for flood risk management. Stoch. Environ. Res. Risk Assess. 2005, 19, 438–447. [Google Scholar] [CrossRef]
- Kozubik, J.; Drab, A. Multicriteria analysis method for flood risk assessment. In Proceedings of the 14th International Symposium-Water Management and Hydraulic Engineering 2015, Brno, Czech Republic, 8–10 September 2015; pp. 348–356. [Google Scholar]
- Adamson, M.; O’Sullivan, J.; Bedri, Z. Reflecting Societal Values in Designing Flood Risk Management Strategies. In Proceedings of the 3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016; Volume 7. [Google Scholar]
- Lopes, C.L.; Alves, F.L.; Dias, J.M. Flood risk assessment in a coastal lagoon under present and future scenarios: Ria de Aveiro case study. Nat. Hazards 2017, 89, 1307–1325. [Google Scholar] [CrossRef]
- Jun, K.-S.; Chung, E.-S.; Kim, Y.-G.; Kim, Y. A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts. Expert Syst. Appl. 2013, 40, 1003–1013. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.S.; Chung, E.S. Robust spatial flood vulnerability assessment for Han River using fuzzy TOPSIS with alpha-cut level set. Expert Syst. Appl. 2014, 41, 644–654. [Google Scholar] [CrossRef]
- Kansal, M.L.; Osheen; Tyagi, A. Hotspot Identification for Urban Flooding in a Satellite Town of National Capital Region of India; Amer Soc Civil Engineers: New York, NY, USA, 2019; pp. 12–24. [Google Scholar]
- Feizizadeh, B.; Kienberger, S. Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment. J. Environ. Plan. Manag. 2017, 60, 2013–2035. [Google Scholar] [CrossRef]
- Lin, L.; Wu, Z.N.; Liang, Q.H. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Nat. Hazards 2019, 97, 455–475. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.S.; Chung, E.S. Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Nat. Hazards Earth Syst. Sci. 2013, 13, 1293–1312. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Jun, K.S.; Chung, E.S. Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method. Nat. Hazards Earth Syst. Sci. 2015, 15, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Ahmadisharaf, E.; Kalyanapu, A.J.; Chung, E.S. Spatial probabilistic multi-criteria decision making for assessment of flood management alternatives. J. Hydrol. 2016, 533, 365–378. [Google Scholar] [CrossRef]
- Ahmadisharaf, E.; Kalyanapu, A.J.; Chung, E.S. Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making. Water Resour. Manag. 2015, 29, 2543–2561. [Google Scholar] [CrossRef]
- Daksiya, V.; Mandapaka, P.V.; Lo, E.Y. Effect of climate change and urbanisation on flood protection decision-making. J. Flood Risk Manag. 2020, 14, e12681. [Google Scholar] [CrossRef]
- Chitsaz, N.; Banihabib, M.E. Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Management Alternatives. Water Resour. Manag. 2015, 29, 2503–2525. [Google Scholar] [CrossRef]
- Carladous, S.; Tacnet, J.M.; Dezert, J.; Han, D.Q.; Batton-Hubert, M. Applying ER-MCDA and BF-TOPSIS to Decide on Effectiveness of Torrent Protection. In Belief Functions: Theory and Applications; Vejnarova, J., Kratochvil, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9861, pp. 56–65. [Google Scholar]
- Banihabib, M.E.; Chitsaz, N.; Randhir, T.O. Non-compensatory decision model for incorporating the sustainable development criteria in flood risk management plans. SN Appl. Sci. 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Taheri, M.; Mohammadi, K.; Heydari, Z.; Farzaneh, H. A New Perspective on BMPs’ Application for Coastal Flood Preparedness; Amer Soc Civil Engineers: New York, NY, USA, 2018; pp. 171–180. [Google Scholar]
- Yang, W.C.; Xu, K.; Lian, J.J.; Ma, C.; Bin, L.L. Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods. Ecol. Indic. 2018, 89, 269–280. [Google Scholar] [CrossRef]
- Karamouz, M.; Taheri, M.; Khalili, P.; Chen, X. Building Infrastructure Resilience in Coastal Flood Risk Management. J. Water Resour. Plan. Manag. ASCE 2019, 145, 18. [Google Scholar] [CrossRef]
- Sabzi, H.Z.; King, J.P. Numerical Comparison of Multi-criteria Decision-Making Techniques: A Simulation on Flood Management Multi-criteria Systems. In Proceedings of the World Environmental and Water Resources Congress 2015, Austin, TX, USA, 17–21 May 2015; pp. 359–373. [Google Scholar]
- Birgani, Y.T.; Yazdandoost, F. An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique. Water Resour. Manag. 2018, 32, 2817–2835. [Google Scholar] [CrossRef]
- Abdullah, L.; Goh, C.; Zamri, N.; Othman, M. Application of interval valued intuitionistic fuzzy TOPSIS for flood management. J. Intell. Fuzzy Syst. 2020, 38, 873–881. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Karamouz, M. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: Case study of New York City. Environ. Monit. Assess. 2017, 189, 567. [Google Scholar] [CrossRef]
- Giannakidou, C.; Diakoulaki, D.; Memos, C.D. Coastal Flooding as Parameters in Mukti-Criteria Analysus for Industrial Site Selection. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 3–28 July 2015; pp. 5026–5035. [Google Scholar]
- Laks, I.; Walczak, Z. Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland). Sustainability 2020, 12, 8056. [Google Scholar] [CrossRef]
- Walczykiewicz, T. Multi-Criteria Analysis for Selection of Activity Options Limiting Flood Risk. Water Resour. 2015, 42, 124–132. [Google Scholar] [CrossRef]
- Naubi, I.; Zardari, N.H.; Shirazi, S.M.; Roslan, N.A.; Yusop, Z.; Haniffah, M. Ranking of Skudai River Sub-Watersheds from Sustainability Indices-Application of PROMETHEE Method. Int. J. Geomate 2017, 12, 124–131. [Google Scholar] [CrossRef]
- Levy, J.K.; Hartmann, J.; Li, K.W.; An, Y.B.; Asgary, A. Multi-criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds. J. Am. Water Resour. Assoc. 2007, 43, 346–358. [Google Scholar] [CrossRef]
- Daksiya, V.; Su, H.T.; Chang, Y.H.; Lo, E.Y.M. Incorporating socio-economic effects and uncertain rainfall in flood mitigation decision using MCDA. Nat. Hazards 2017, 87, 515–531. [Google Scholar] [CrossRef]
- Dassanayake, D.R.; Burzel, A.; Oumeraci, H. Methods for the Evaluation of Intangible Flood Losses and Their Integration in Flood Risk Analysis. Coast. Eng. J. 2015, 57, 1540007. [Google Scholar] [CrossRef]
- Su, H.T.; Tung, Y.K. Multi-criteria decision making under uncertainty for flood mitigation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1657–1670. [Google Scholar] [CrossRef]
- Yang, C.L.; Shieh, M.C.; Huang, C.Y.; Tung, C.P. A Derivation of Factors Influencing the Successful Integration of Corporate Volunteers into Public Flood Disaster Inquiry and Notification Systems. Sustainability 2018, 10, 1973. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Gong, Z.; Gao, G.; Shah, A.A. Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in the Yangtze River Delta. Int. J. Disaster Risk Reduct. 2020, 51, 101768. [Google Scholar] [CrossRef]
- Karamouz, M.; Hojjat-Ansari, A. Uncertainty based budget allocation of wastewater infrastructures’ flood resiliency considering interdependencies. J. Hydroinform. 2020, 22, 768–792. [Google Scholar] [CrossRef]
- Azarnivand, A.; Malekian, A. Analysis of Flood Risk Management Strategies Based on a Group Decision Making Process via Interval-Valued Intuitionistic Fuzzy Numbers. Water Resour. Manag. 2016, 30, 1903–1921. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Karamouz, M.; Farzaneh, H. Margin of Safety Based Flood Reliability Evaluation of Wastewater Treatment Plants: Part 2-Quantification of Reliability Attributes. Water Resour. Manag. 2020, 34, 2043–2059. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, H.; Yin, D.D.; Kashem, S.; Li, R.P.; Cai, H.; Perkins, D.; Wang, S.W. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management. Int. J. Digit. Earth 2019, 12, 1364–1381. [Google Scholar] [CrossRef]
- de Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Yougbare, J.W. The ranking of districts in Ouagadougou by the risk of flood and runoff using the PROMETHEE. Eur. J. Pure Appl. Math. 2019, 12, 1731–1743. [Google Scholar] [CrossRef] [Green Version]
- Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A. KULTURisk regional risk assessment methodology for water-related natural hazards-Part 2: Application to the Zurich case study. Hydrol. Earth Syst. Sci. 2015, 19, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Hadipour, V.; Vafaie, F.; Deilami, K. Coastal Flooding Risk Assessment Using a GIS-Based Spatial Multi-Criteria Decision Analysis Approach. Water 2020, 12, 2379. [Google Scholar] [CrossRef]
- Mishra, D.; Satapathy, S. MCDM approach for mitigation of flooding risks in Odisha (India) based on information retrieval. Int. J. Cogn. Inform. Nat. Intell. (IJCINI) 2020, 14, 77–91. [Google Scholar] [CrossRef]
- Lee, G.; Choi, J.; Jun, K.S. MCDM Approach for Identifying Urban Flood Vulnerability under Social Environment and Climate Change. J. Coast. Res. 2017, 79, 209–213. [Google Scholar] [CrossRef]
- Fernandez, P.; Mourato, S.; Moreira, M. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal). Geomat. Nat. Hazards Risk 2016, 7, 1367–1389. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, J.S.; Lee, H.S. Flood-Prone Area Assessment Using GIS-Based Multi-Criteria Analysis: A Case Study in Davao Oriental, Philippines. Water 2019, 11, 2203. [Google Scholar] [CrossRef] [Green Version]
- de Brito, M.M.; Almoradie, A.; Evers, M. Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model. Int. J. Geogr. Inf. Sci. 2019, 33, 1788–1806. [Google Scholar] [CrossRef]
- Mondlane, A.; Hansson, K.; Popov, O. ICT for Flood Risk Management Strategies a GIS-based MCDA (M) Approach. In Proceedings of the 2013 IST-Africa Conference & Exhibition, Nairobi, Kenya, 29–31 May 2013. [Google Scholar]
- Kim, Y.; Eisenberg, D.A.; Bondank, E.N.; Chester, M.V.; Mascaro, G.; Underwood, B.S. Fail-safe and safe-to-fail adaptation: Decision-making for urban flooding under climate change. Clim. Chang. 2017, 145, 397–412. [Google Scholar] [CrossRef]
- Alves, P.B.R.; de Melo, H.; Tsuyuguchi, B.B.; Rufino, I.A.A.; Feitosa, P.H.C. Mapping of Flood Suscepitibility in Campina Grande County-PB: A Spatial Multicriteria Approach. Bol. Cienc. Geod. 2018, 24, 28–43. [Google Scholar] [CrossRef]
- Mirzaei, G.; Soltani, A.; Soltani, M.; Darabi, M. An integrated data-mining and multi-criteria decision-making approach for hazard-based object ranking with a focus on landslides and floods. Environ. Earth Sci. 2018, 77, 581. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.Y.; Chen, W.; Li, S.J.; Pamucar, D.; Gigovic, L.; Drobnjak, S.; Bui, D.T.; Duan, H.X. A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Vojtek, M.; Vojtekova, J. Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical Hierarchy Process. Water 2019, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- El-Magd, S.A.A.; Amer, R.A.; Embaby, A. Multi-criteria decision-making for the analysis of flash floods: A case study of Awlad Toq-Sherq, Southeast Sohag, Egypt. J. Afr. Earth Sci. 2020, 162, 103709. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Mogheir, Y. Flood hazard mapping using a multi-criteria decision analysis and GIS (case study Gaza Governorate, Palestine). Arab. J. Geosci. 2020, 13, 44. [Google Scholar] [CrossRef]
- Bouamrane, A.; Derdous, O.; Dahri, N.; Tachi, S.-E.; Boutebba, K.; Bouziane, M.T. A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria). Int. J. River Basin Manag. 2020, 1–11. [Google Scholar] [CrossRef]
- Morea, H.; Samanta, S. Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the Kemp-Welch Catchment, Central Province, Papua New Guinea. Appl. Geomat. 2020, 12, 427–440. [Google Scholar] [CrossRef]
- Nachappa, T.G.; Piralilou, S.T.; Gholamnia, K.; Ghorbanzadeh, O.; Rahmati, O.; Blaschke, T. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J. Hydrol. 2020, 590, 125275. [Google Scholar] [CrossRef]
- Stavropoulos, S.; Zaimes, G.N.; Filippidis, E.; Diaconu, D.C.; Emmanouloudis, D. Mitigating Flash Floods with the Use of New Technologies: A Ulti-Criteria Decision Analysis to Map Flood Susceptibility for Zakynthos Island, Greece. J. Urban Reg. Anal. 2020, 12, 233–248. [Google Scholar] [CrossRef]
- Sukcharoen, T.; Weng, J.N.; Charoenkalunyuta, T. GIS-Based Flood Risk Model Evaluated by Fuzzy Analytic Hierarchy Process (FAHP). In Remote Sensing for Agriculture, Ecosystems, and Hydrology Xviii; Neale, C.M.U., Maltese, A., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9998. [Google Scholar]
- Toosi, A.S.; Calbimonte, G.H.; Nouri, H.; Alaghmand, S. River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. J. Hydrol. 2019, 574, 660–671. [Google Scholar] [CrossRef]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Kim, B.; Han, K.Y. Application of Fuzzy TOPSIS to Flood Hazard Mapping for Levee Failure. Water 2019, 11, 592. [Google Scholar] [CrossRef] [Green Version]
- Gigovic, L.; Pamucar, D.; Bajic, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Sepehril, M.; Malekinezhad, H.; Hosseini, S.Z.; Ildoromi, A.R. Assessment of flood hazard mapping in urban areas using entropy weighting method: A case study in Hamadan city, Iran. Acta Geophys. 2019, 67, 1435–1449. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, E.S. Robustness, Uncertainty and Sensitivity Analyses of the TOPSIS Method for Quantitative Climate Change Vulnerability: A Case Study of Flood Damage. Water Resour. Manag. 2016, 30, 4751–4771. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Kantoush, S.A.; Saber, M.; Sumi, T.; Habiba, O.M.; Elleithy, D.; Elboshy, B.J.R.S. Integrated Methodology for Urban Flood Risk Mapping at the Microscale in Ungauged Regions: A Case Study of Hurghada, Egypt. Remote Sens. 2020, 12, 3548. [Google Scholar] [CrossRef]
- Ziarh, G.F.; Asaduzzaman, M.; Dewan, A.; Nashwan, M.S.; Shahid, S. Integration of catastrophe and entropy theories for flood risk mapping in peninsular Malaysia. J. Flood Risk Manag. 2021, 14, e12686. [Google Scholar] [CrossRef]
- Xenarios, S.; Polatidis, H. Alleviating climate change impacts in rural Bangladesh: A PROMETHEE outranking-based approach for prioritizing agricultural interventions. Environ. Dev. Sustain. 2015, 17, 963–985. [Google Scholar] [CrossRef]
- Hammami, S.; Zouhri, L.; Souissi, D.; Souei, A.; Zghibi, A.; Marzougui, A.; Dlala, M. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab. J. Geosci. 2019, 12, 653. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci. Total Environ. 2019, 660, 443–458. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Nigusse, A.G.; Adhanom, O.G. Flood Hazard and Flood Risk Vulnerability Mapping Using Geo-Spatial and MCDA around Adigrat, Tigray Region, Northern Ethiopia. Momona Ethiop. J. Sci. 2019, 11, 90–107. [Google Scholar] [CrossRef]
- Azareh, A.; Sardooi, E.R.; Choubin, B.; Barkhori, S.; Shahdadi, A.; Adamowski, J.; Shamshirband, S. Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto Int. 2019, 36, 2345–2365. [Google Scholar] [CrossRef]
- Feloni, E.; Mousadis, I.; Baltas, E. Flood vulnerability assessment using a GIS-based multi-criteria approach-The case of Attica region. J. Flood Risk Manag. 2019, 13, e12563. [Google Scholar] [CrossRef] [Green Version]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Madhuri, B.; Aniruddha, G.; Rahul, R. Identification and classification of flood prone areas using AHP, GIS and GPS. Disaster Adv. 2013, 6, 120–131. [Google Scholar]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Tella, A.; Balogun, A.-L. Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Nat. Hazards 2020, 104, 2277–2306. [Google Scholar] [CrossRef]
- Vignesh, K.; Anandakumar, I.; Ranjan, R.; Borah, D. Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Model. Earth Syst. Environ. 2020, 7, 767–781. [Google Scholar] [CrossRef]
- Rincon, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Franci, F.; Bitelli, G.; Mandanici, E.; Hadjimitsis, D.; Agapiou, A. Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping. Nat. Hazards 2016, 83, S31–S51. [Google Scholar] [CrossRef]
- Komolafe, A.A.; Olorunfemi, I.E.; Akinluyi, F.O.; Adeyemi, M.A.; Ajayi, J.A. Enhanced flood hazard modelling using hydraulic, analytical hierarchical process and height above nearest drainage models in Ogunpa river basin, Ibadan, Southwestern Nigeria. Model. Earth Syst. Environ. 2020, 7, 967–981. [Google Scholar] [CrossRef]
- Sepehri, M.; Ildoromi, A.R.; Malekinezhad, H.; Ghahramani, A.; Ekhtesasi, M.R.; Cao, C.; Kiani-Harchegani, M. Assessment of check dams’ role in flood hazard mapping in a semi-arid environment. Geomat. Nat. Hazards Risk 2019, 10, 2239–2256. [Google Scholar] [CrossRef] [Green Version]
- Ahmadisharaf, E.; Tajrishy, M.; Alamdari, N. Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making. J. Environ. Plan. Manag. 2016, 59, 1397–1417. [Google Scholar] [CrossRef]
- Vogel, R. Methodology and software solutions for multicriteria evaluation of floodplain retention suitability. Cartogr. Geogr. Inf. Sci. 2016, 43, 301–320. [Google Scholar] [CrossRef]
- Abdelkarim, A.; Al-Alola, S.S.; Alogayell, H.M.; Mohamed, S.A.; Alkadi, I.I.; Ismail, I.Y.J.W. Integration of GIS-based multicriteria decision analysis and analytic hierarchy process to assess flood hazard on the Al-Shamal train pathway in Al-Qurayyat region, kingdom of Saudi Arabia. Water 2020, 12, 1702. [Google Scholar] [CrossRef]
- Chung, E.S.; Lee, K.S. Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea. Water Resour. Manag. 2009, 23, 2395–2416. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, Z.W.; Tang, Z.H.; Zeng, G.M. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Afifi, Z.; Chu, H.J.; Kuo, Y.L.; Hsu, Y.C.; Wong, H.K.; Ali, M.Z. Residential Flood Loss Assessment and Risk Mapping from High-Resolution Simulation. Water 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Hadipour, V.; Vafaie, F.; Kerle, N. An indicator-based approach to assess social vulnerability of coastal areas to sea-level rise and flooding: A case study of Bandar Abbas city, Iran. Ocean Coast. Manag. 2020, 188, 105077. [Google Scholar] [CrossRef]
- Mishra, K.; Sinha, R. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Yi, S.Z.; Wang, C.H.; Xiao, Y.F. Incorporating probabilistic approach into local multi-criteria decision analysis for flood susceptibility assessment. Stoch. Environ. Res. Risk Assess. 2018, 32, 701–714. [Google Scholar] [CrossRef]
- Kovačević, M.S.; Librić, L.; Ivoš, G.; Cerić, A.J.S. Application of reliability analysis for risk ranking in a levee reconstruction project. Sustainability 2020, 12, 1404. [Google Scholar] [CrossRef] [Green Version]
Criteria | Definition |
---|---|
Vulnerability | Propensity or predisposition of human societies to be negatively impacted by climate hazards. |
Exposure | The extent to which human society and its supporting sectors are stressed by the future changing climate conditions. Exposure in ND-GAIN captures the physical factors external to the system that contribute to vulnerability. |
Sensitivity | The degree to which people and the sectors they depend upon are affected by climate-related perturbations. The factors increasing sensitivity include degree 4 of dependency on sectors that are climate sensitive and the proportion of populations sensitive to climate hazard due to factors such as topography and demography. |
Adaptive
Capacity | The ability of society and its supporting sectors to adjust to reduce potential damage and to respond to the negative consequences of climate events. In ND-GAIN, adaptive capacity indicators seek to capture a collection of means, readily deployable to deal with sector-specific climate change impacts. |
Readiness | Readiness to make effective use of investments for adaptation actions thanks to a safe and efficient business environment. |
Economic Readiness | The investment climate that facilitates mobilising capitals from the private sector. |
Governance Readiness | The stability of the society and institutional arrangements that contribute to the investment risks. A stable country with high governance capacity reassures investors that the invested capitals could grow under the help of responsive public services and without significant interruption. |
Social Readiness | Social conditions that help society to make efficient and equitable use of investment and yield more benefit from the investment. |
No. | Vulnerability Sector | Indicator/Criteria | Total |
---|---|---|---|
1 | Water |
| 12 |
2 | Food & Commodity |
| 6 |
3 | Infrastructure |
| 12 |
No. | Readiness Sector | Indicator/Criteria | Total |
---|---|---|---|
1 | Economy |
| 10 |
2 | Governance |
| 5 |
3 | Social |
| 5 |
No. | Vulnerability Sector | Indicator/Criteria | Total |
---|---|---|---|
1 | Food |
| 6 |
2 | Water |
| 6 |
3 | Health |
| 6 |
4 | Ecosystem Services |
| 6 |
5 | Human Habitat |
| 6 |
6 | Infrastructure |
| 6 |
No. | Readiness Sector | Indicator/Criteria | Total |
1 | Economic |
| 1 |
2 | Governance |
| 4 |
3 | Social |
| 4 |
No. | Domain Group | Count |
---|---|---|
1 | Single Macro domain | 73 |
2 | Integrated Macro domain | 58 |
No. | Macro Domain | Count |
---|---|---|
1 | Environment | 68 |
2 | Economic + Social +Environment | 19 |
3 | Social + Environment | 11 |
4 | Economic + Social + Technological + Environment | 6 |
5 | Economic + Social + Technological + Environment + Legal | 4 |
6 | Political + Economic + Social + Technological + Environment | 3 |
7 | Social | 3 |
8 | Social + Technological + Environment | 3 |
9 | Economic | 2 |
10 | Economic + Environment | 2 |
11 | Economic + Social | 2 |
12 | Economic + Social +Environment + Legal | 1 |
13 | Economic + Technological + Environment | 1 |
14 | Economic + Technological + Legal | 1 |
15 | Political + Economic + Social + Environment | 1 |
16 | Political + Social + Economic | 1 |
17 | Social + Environment + Legal | 1 |
18 | Social + Technological | 1 |
19 | Technological + Environment | 1 |
Flood Measures | Decision Goals | No. of Articles | Percentage |
---|---|---|---|
Assessment | Resilience | 38 | 44% |
Vulnerability | 26 | 30% | |
Risk | 17 | 20% | |
Hazards | 4 | 5% | |
Risk and Resilience | 2 | 2% | |
Mapping | Vulnerability | 13 | 62% |
Hazards | 5 | 24% | |
Risk | 2 | 10% | |
Resilience | 1 | 5% | |
Assessment and Mapping | Vulnerability | 14 | 61% |
Hazards | 3 | 13% | |
Risk | 2 | 9% | |
Resilience | 2 | 9% | |
Vulnerability and Resilience | 1 | 4% | |
Risk and Vulnerability | 1 | 4% |
Macro Domain (PESTEL) | Assessment | ||||
---|---|---|---|---|---|
Resilience | Risk | Hazards | Vulnerability | Risk and Resilience | |
Environment | [3,4,5,6,7,8,9,10,11,12,13,14] | [15,16,17,18,19] | [20,21,22,23] | [24,25,26,27,28,29,30,31,32,33,34,35] | [36] |
Economic + Social + Environment | [37,38,39,40,41] | [42,43] | [44,45,46,47,48,49,50] | ||
Economic + Environment | [51,52,53] | ||||
Economic + Social + Technological + Environment | [54,55,56] | [57] | [58] | [59] | |
Economic + Social + Technological + Environment + Legal | [60,61,62] | [63] | |||
Economic + Social + Environment + Legal | [64,65] | [66] | |||
Social + Technological + Environment | [67,68] | ||||
Economic + Social | [69] | [70] | |||
Economic + Technological + Environment | [71] | ||||
Economic + Technological + Legal | [72] | ||||
Political + Economic + Social + Environment | [73] | ||||
Political + Economic + Social + Technological + Environment | [74] | [75,76] | |||
Political + Social + Environment | [77] | ||||
Social | [78] | [79] | |||
Social + Environment | [80,81,82,83] | [84,85,86] | |||
Social + Environment + Legal | [87] | ||||
Social + Technological | [88] | ||||
Technological + Environment | [89] |
Macro Domain (PESTEL) | Mapping | |||
---|---|---|---|---|
Vulnerability | Resilience | Risk | Hazards | |
Environment | [90,91,92,93,94,95,96,97,98,99,100] | [101] | [102,103,104,105,106] | |
Economic + Social + Environment | [107] | |||
Social | [108] | |||
Social + Technological + Environment | [109] | |||
Economic + Social | [110] |
Macro Domain | Assessment and Mapping | |||||
---|---|---|---|---|---|---|
Vulnerability | Risk | Hazards | Resilience | Vulnerability and Resilience | Risk and Vulnerability | |
Environment | [111,112,113,114,115,116,117,118,119,120,121] | [122] | [123,124,125] | [126,127] | [128] | |
Economic + Social + Environment | [129] | |||||
Economic + Social + Technological + Environment | [130] | |||||
Social + Environment | [131,132] | [133] |
MCDA Technique | Flood | |||
---|---|---|---|---|
Mitigation | Preparedness | Recovery | Response | |
AHP | [3,12,15,16,20,21,22,27,29,32,35,36,43,47,48,63,64,75,82,85,86,87,89,90,92,94,97,98,102,103,105,108,113,114,116,118,119,120,121,122,124,128,133] | [42,65,74,96,101,111,117,123] | [30] | [17,130,131,134] |
Mixed methods | [5,10,11,24,33,44,54,56,61,66,70,73,79,83,84,99,100,109,112,129,132] | [14,23,28,34,37,39,57,59,77,127] | - | [60,78] |
TOPSIS | [7,45,49,58,62,91,107,126] | [6,55,104] | - | [8,13] |
ANP | [40,68,93,115] | [26,135] | - | [72] |
CBD | [46] | - | - | - |
CP | [9,25,38,52] | [51] | - | - |
ELECTRE | - | - | - | - |
Entropy | [106,125] | - | - | - |
NAIADE | - | - | - | - |
PROMETHEE | [41,53,67,69,71,80] | - | - | - |
SAW/WSM | [19,76,81] | - | - | [4] |
VIKOR | - | - | - | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, M.F.; Zainol, Z.; Thian, S.Y.; Ab Ghani, N.H.; Mat Jusoh, A.; Mat Amin, M.Z.; Mohamad, N.A. Big Data in Criteria Selection and Identification in Managing Flood Disaster Events Based on Macro Domain PESTEL Analysis: Case Study of Malaysia Adaptation Index. Big Data Cogn. Comput. 2022, 6, 25. https://doi.org/10.3390/bdcc6010025
Abdullah MF, Zainol Z, Thian SY, Ab Ghani NH, Mat Jusoh A, Mat Amin MZ, Mohamad NA. Big Data in Criteria Selection and Identification in Managing Flood Disaster Events Based on Macro Domain PESTEL Analysis: Case Study of Malaysia Adaptation Index. Big Data and Cognitive Computing. 2022; 6(1):25. https://doi.org/10.3390/bdcc6010025
Chicago/Turabian StyleAbdullah, Mohammad Fikry, Zurina Zainol, Siaw Yin Thian, Noor Hisham Ab Ghani, Azman Mat Jusoh, Mohd Zaki Mat Amin, and Nur Aiza Mohamad. 2022. "Big Data in Criteria Selection and Identification in Managing Flood Disaster Events Based on Macro Domain PESTEL Analysis: Case Study of Malaysia Adaptation Index" Big Data and Cognitive Computing 6, no. 1: 25. https://doi.org/10.3390/bdcc6010025
APA StyleAbdullah, M. F., Zainol, Z., Thian, S. Y., Ab Ghani, N. H., Mat Jusoh, A., Mat Amin, M. Z., & Mohamad, N. A. (2022). Big Data in Criteria Selection and Identification in Managing Flood Disaster Events Based on Macro Domain PESTEL Analysis: Case Study of Malaysia Adaptation Index. Big Data and Cognitive Computing, 6(1), 25. https://doi.org/10.3390/bdcc6010025