Topic Analysis of the Literature Reveals the Research Structure: A Case Study in Periodontics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
- The dataset spanned publications from January 2009 to August 2024.
- For each publication year, the database was queried on a monthly basis to ensure complete data retrieval and avoid server-side limitations.
- Retrieved information included PubMed ID (PMID), title, publication year, authors, abstract, and MeSH keywords.
2.2. Data Analysis
2.2.1. The Dataset
2.2.2. Embedding Generation
2.2.3. Dimensionality Reduction
2.2.4. Clustering
- UMAP metric: cosine;
- Size of the neighborhood: 25;
- Number of components: 10;
- HDBSCAN clustering metric: Euclidean;
- Minimum cluster size: 250.
2.2.5. Keyword Refinement
2.2.6. Topic Modeling with LDA
2.3. LLM Labeling
2.4. Data Visualization and Trend Analysis
3. Results
3.1. BERTopic Analysis—Setting the Stage
3.2. Overview of the Research Landscape
3.3. Relations Between Topics
3.4. LDA Topic Modeling: A Conventional Perspective
3.5. A Changing Mosaic: The Evolution of Research Topics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dentino, A.; Lee, S.; Mailhot, J.; Hefti, A.F. Principles of Periodontology. Periodontology 2000 2013, 61, 16–53. [Google Scholar] [CrossRef]
- Raj, S.C.; Tabassum, S.; Mahapatra, A.; Patnaik, K. Interdisciplinary Periodontics. In Periodontology-Fundamentals and Clinical Features; IntechOpen: London, UK, 2021; ISBN 1838806792. [Google Scholar]
- Lyons, K.M.; Darby, I. Interdisciplinary Periodontics: The Multidisciplinary Approach to the Planning and Treatment of Complex Cases. Periodontology 2000 2017, 74, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Landhuis, E. Scientific Literature: Information Overload. Nature 2016, 535, 457–458. [Google Scholar] [CrossRef]
- Stephens, K.S.; White, B.P. Keeping Up With the Literature: New Solutions for an Old Problem. J. Pharm. Pract. 2024, 37, 11–13. [Google Scholar] [CrossRef]
- Larsen, P.; Von Ins, M. The Rate of Growth in Scientific Publication and the Decline in Coverage Provided by Science Citation Index. Scientometrics 2010, 84, 575–603. [Google Scholar] [CrossRef]
- Clapham, P. Publish or Perish. Bioscience 2005, 55, 390–391. [Google Scholar] [CrossRef]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal Database Combinations for Literature Searches in Systematic Reviews: A Prospective Exploratory Study. Syst. Rev. 2017, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Appadurai, A. Modernity at Large: Cultural Dimensions of Globalization; University of Minnesota Press: Minneapolis, MN, USA, 1996; Volume 1, ISBN 145290006X. [Google Scholar]
- Delen, D.; Crossland, M.D. Seeding the Survey and Analysis of Research Literature with Text Mining. Expert. Syst. Appl. 2008, 34, 1707–1720. [Google Scholar] [CrossRef]
- Vayansky, I.; Kumar, S.A.P. A Review of Topic Modeling Methods. Inf. Syst. 2020, 94, 101582. [Google Scholar] [CrossRef]
- Kavvadias, S.; Drosatos, G.; Kaldoudi, E. Supporting Topic Modeling and Trends Analysis in Biomedical Literature. J. Biomed. Inf. 2020, 110, 103574. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Cheng, X.; Liao, S. A Comparison Study of Topic Modeling Based Literature Analysis by Using Full Texts and Abstracts of Scientific Articles: A Case of COVID-19 Research. Libr. Hi Tech. 2023, 41, 543–569. [Google Scholar] [CrossRef]
- Abdelrazek, A.; Eid, Y.; Gawish, E.; Medhat, W.; Hassan, A. Topic Modeling Algorithms and Applications: A Survey. Inf. Syst. 2023, 112, 102131. [Google Scholar] [CrossRef]
- Kherwa, P.; Bansal, P. Topic Modeling: A Comprehensive Review. ICST Trans. Scalable Inf. Syst. 2018, 0, 159623. [Google Scholar] [CrossRef]
- Basmatkar, P.; Maurya, M. An Overview of Contextual Topic Modeling Using Bidirectional Encoder Representations from Transformers. In Proceedings of Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021; Springer: Singapore, 2022; pp. 489–504. [Google Scholar]
- Grootendorst, M. BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Stroudsburg, PA, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Yuan, W.; Lei, Y.; Guo, X. Research on Text Similarity Calculation Based on BERT and Word2Vec. In Proceedings of the ICETIS 2022; 7th International Conference on Electronic Technology and Information Science, Harbin, China, 21–23 January 2022; pp. 1–4. [Google Scholar]
- Shen, Y.; Liu, J. Comparison of Text Sentiment Analysis Based on Bert and Word2vec. In Proceedings of the 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), Greenville, SC, USA, 12–14 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 144–147. [Google Scholar]
- Rui, Y.; Tan, T.F.; Lu, W.; Thirunavukarasu, A.J.; Ting, D.S.W.; Liu, N. Large language models in health care: Development, applications, and challenges. Health Care Science 2023, 2, 255–263. [Google Scholar]
- Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y. A Survey on Evaluation of Large Language Models. ACM Trans. Intell. Syst. Technol. 2024, 15, 39. [Google Scholar] [CrossRef]
- Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D. Emergent Abilities of Large Language Models. arXiv 2022, arXiv:2206.07682. [Google Scholar]
- Bassi, S. A Primer on Python for Life Science Researchers. PLoS Comput. Biol. 2007, 3, e199. [Google Scholar] [CrossRef]
- Jia, Z.; Maggioni, M.; Smith, J.; Scarpazza, D.P. Dissecting the NVidia Turing T4 GPU via Microbenchmarking. arXiv 2019, arXiv:1903.07486. [Google Scholar]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Mckinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010; pp. 51–56. [Google Scholar]
- Cook, D.A.; Beckman, T.J.; Bordage, G. A Systematic Review of Titles and Abstracts of Experimental Studies in Medical Education: Many Informative Elements Missing. Med. Educ. 2007, 41, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Hartley, J. Planning That Title: Practices and Preferences for Titles with Colons in Academic Articles. Libr. Inf. Sci. Res. 2007, 29, 553–568. [Google Scholar] [CrossRef]
- Guizzardi, S.; Colangelo, M.T.; Mirandola, P.; Galli, C. Modeling New Trends in Bone Regeneration, Using the BERTopic Approach. Regen. Med. 2023, 18, 719–734. [Google Scholar] [CrossRef]
- Saif, H.; Fernandez, M.; He, Y.; Alani, H. On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter. In Proceedings of the Ninth International Conference on Language Resources and Evaluation; Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S., Eds.; European Language Resources Association (ELRA): Reykjavik, Iceland, 2014; pp. 810–817. [Google Scholar]
- Gutiérrez, L.; Keith, B. A Systematic Literature Review on Word Embeddings. In Proceedings of the Trends and Applications in Software Engineering: Proceedings of the 7th International Conference on Software Process Improvement (CIMPS 2018) 7; Springer: Berlin/Heidelberg, Germany, 2019; pp. 132–141. [Google Scholar]
- Wang, S.; Zhou, W.; Jiang, C. A Survey of Word Embeddings Based on Deep Learning. Computing 2020, 102, 717–740. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process Syst. 2017, 30, 6000–6010. [Google Scholar]
- Liu, Q.; Kusner, M.J.; Blunsom, P. A Survey on Contextual Embeddings. arXiv 2020, arXiv:2003.07278. [Google Scholar]
- Galli, C.; Donos, N.; Calciolari, E. Performance of 4 Pre-Trained Sentence Transformer Models in the Semantic Query of a Systematic Review Dataset on Peri-Implantitis. Information 2024, 15, 68. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Raschka, S.; Patterson, J.; Nolet, C. Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information 2020, 11, 193. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Qaiser, S.; Ali, R. Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. Int. J. Comput. Appl. 2018, 181, 25–29. [Google Scholar] [CrossRef]
- Xu, D.D.; Wu, S.B. An Improved TFIDF Algorithm in Text Classification. Appl. Mech. Mater. 2014, 651, 2258–2261. [Google Scholar] [CrossRef]
- Akre, P.; Malu, R.; Jha, A.; Tekade, Y.; Bisen, W. Sentiment Analysis Using Opinion Mining on Customer Review. Int. J. Eng. Manag. Res. 2023, 13, 41–44. [Google Scholar]
- Issa, B.; Jasser, M.B.; Chua, H.N.; Hamzah, M. A Comparative Study on Embedding Models for Keyword Extraction Using KeyBERT Method. In Proceedings of the 2023 IEEE 13th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 2 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 40–45. [Google Scholar]
- Zhang, Y.; Jin, R.; Zhou, Z.-H. Understanding Bag-of-Words Model: A Statistical Framework. Int. J. Mach. Mach. Learn. Cybern. 2010, 1, 43–52. [Google Scholar] [CrossRef]
- Bennani-Smires, K.; Musat, C.; Hossmann, A.; Baeriswyl, M.; Jaggi, M. Simple Unsupervised Keyphrase Extraction Using Sentence Embeddings. arXiv 2018, arXiv:1801.04470. [Google Scholar]
- Chauhan, U.; Shah, A. Topic Modeling Using Latent Dirichlet Allocation: A Survey. ACM Comput. Surv. (CSUR) 2021, 54, 145. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Baldha, T.; Mungalpara, M.; Goradia, P.; Bharti, S. COVID-19 Vaccine Tweets Sentiment Analysis and Topic Modelling for Public Opinion Mining. In Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24–26 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Teknium Teknium/OpenHermes-2.5-Mistral-7B. Available online: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B (accessed on 10 February 2024).
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large Language Models in Medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, J.; Lee, S.; Kang, U. A Comprehensive Survey of Compression Algorithms for Language Models. arXiv 2024, arXiv:2401.15347. [Google Scholar]
- Kaddour, J.; Harris, J.; Mozes, M.; Bradley, H.; Raileanu, R.; McHardy, R. Challenges and Applications of Large Language Models. arXiv 2023, arXiv:2307.10169. [Google Scholar]
- Meskó, B. Prompt Engineering as an Important Emerging Skill for Medical Professionals: Tutorial. J. Med. Internet Res. 2023, 25, e50638. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Lavanya, A.; Gaurav, L.; Sindhuja, S.; Seam, H.; Joydeep, M.; Uppalapati, V.; Ali, W.; SD, V.S. Assessing the Performance of Python Data Visualization Libraries: A Review. Int. J. Comput. Eng. Res. Trends. 2023, 10, 29–39. [Google Scholar] [CrossRef]
- Albandar, J.M. Disparities and Social Determinants of Periodontal Diseases. In Periodontology 2000; Wiley: Hoboken, NJ, USA, 2024. [Google Scholar]
- Bond, J.C.; Casey, S.M.; McDonough, R.; McLone, S.G.; Velez, M.; Heaton, B. Validity of Individual Self-report Oral Health Measures in Assessing Periodontitis for Causal Research Applications. J. Periodontol. 2024, 95, 892–906. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.R.; Rivas-Tumanyan, S.; Santosh, A.B.R.; Boneta, A.E. Periodontal Health Knowledge and Oral Health-Related Quality of Life in Caribbean Adults. Oral Health Prev. Dent. 2024, 22, 9–22. [Google Scholar]
- Noh, M.; Kim, E.; Sakong, J.; Park, E.Y. Effects of Professional Toothbrushing among Patients with Gingivitis. Int. J. Dent. Hyg. 2023, 21, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Salari, A.; Alavi, F.N.; Aliaghazadeh, K.; Nikkhah, M. Effect of Milk as a Mouthwash on Dentin Hypersensitivity after Non-Surgical Periodontal Treatment. J. Adv. Periodontol. Implant. Dent. 2022, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, R.; Pati, T.; Panda, N.R.; Mohanty, J.N.; Bhuyan, S.K. A Six-Month Single-Center Study in 2021 on Oral Manifestations during Pregnancy in Bhubaneswar, India. Iran. J. Med. Sci. 2023, 48, 350. [Google Scholar]
- Kamalabadi, Y.M.; Campbell, M.K.; Zitoun, N.M.; Jessani, A. Unfavourable Beliefs about Oral Health and Safety of Dental Care during Pregnancy: A Systematic Review. BMC Oral Health 2023, 23, 762. [Google Scholar] [CrossRef]
- Carrouel, F.; Kanoute, A.; Lvovschi, V.-E.; Bourgeois, D. Periodontal Pathogens of the Interdental Microbiota in a 3 Months Pregnant Population with an Intact Periodontium. Front. Microbiol. 2023, 14, 1275180. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lu, H.; Yang, S.; Liu, Y.; Zhu, P.; Li, P.; De Waal, Y.C.M.; Visser, A.; Tjakkes, G.-H.E.; Li, A. Predictive Factors for the Treatment Success of Peri-Implantitis: A Protocol for a Prospective Cohort Study. BMJ Open 2024, 14, e072443. [Google Scholar] [CrossRef] [PubMed]
- AlHelal, A.A.; Alzaid, A.A.; Almujel, S.H.; Alsaloum, M.; Alanazi, K.K.; Althubaitiy, R.O.; Al-Aali, K.A. Evaluation of Peri-Implant Parameters and Functional Outcome of Immediately Placed and Loaded Mandibular Overdentures: A 5-Year Follow-up Study. Oral Health Prev. Dent. 2024, 22, 23–30. [Google Scholar] [PubMed]
- Chang, S.-W.; Shin, S.-Y.; Hong, J.-R.; Yang, S.-M.; Yoo, H.-M.; Park, D.-S.; Oh, T.-S.; Kye, S.-B. Immediate Implant Placement into Infected and Noninfected Extraction Sockets: A Pilot Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2009, 107, 197–203. [Google Scholar] [CrossRef]
- Malkoc, M.A.; Sevimay, M.; Yaprak, E. The Use of Zirconium and Feldspathic Porcelain in the Management of the Severely Worn Dentition: A Case Report. Eur. J. Dent. 2009, 3, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-G.; Jin, G.; Lim, J.-H.; Liu, Y.; Afrashtehfar, K.I.; Kim, J.-E. Influence of Hydrothermal Aging on the Shear Bond Strength of 3D Printed Denture-Base Resin to Different Relining Materials. J. Mech. Behav. Biomed. Mater. 2024, 149, 106221. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.V.L.; Vogel, J.D.O.; Cortezzi, E.B.D.A.; de Arruda, J.A.A.; Cunha, J.L.S.; Andrade, B.A.B.D.; Tenório, J.R. Diagnosis and Management of Exuberant Palatal Pyogenic Granuloma in a Systemically Compromised Patient–Case Report. Spec. Care Dent. 2023, 44, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Rathi, N.; Reche, A.; Agrawal, S.; Agrawal, S.R. Radicular Cyst: A Cystic Lesion Involving the Hard Palate. Cureus 2023, 15, e47030. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.; Jyoti, D.; Malhotra, R.; Phull, T.; Sidhu, H.S.; Nayak, S. Management of Chronic Inflammatory Gingival Enlargement: A Short Review and Case Report. Cureus 2023, 15, e46770. [Google Scholar] [CrossRef] [PubMed]
- Krieger, M.; AbdelRahman, Y.M.; Choi, D.; Palmer, E.A.; Yoo, A.; McGuire, S.; Kreth, J.; Merritt, J. The Prevalence of Fusobacterium Nucleatum Subspecies in the Oral Cavity Stratifies by Local Health Status. bioRxiv 2023. bioRxiv: 2010–2023. [Google Scholar]
- Molli, V.L.P.; Kissa, J.; Baraniya, D.; Gharibi, A.; Chen, T.; Al-Hebshi, N.N.; Albandar, J.M. Bacteriome Analysis of Aggregatibacter Actinomycetemcomitans-JP2 Genotype-Associated Grade C Periodontitis in Moroccan Adolescents. Front. Oral Health 2023, 4, 1288499. [Google Scholar] [CrossRef]
- Demirel, K.J.; Wu, R.; Guimaraes, A.N.; Demirel, I. The Role of NLRP3 in Regulating Gingival Epithelial Cell Responses Evoked by Aggregatibacter Actinomycetemcomitans. Cytokine 2023, 169, 156316. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Nieboga, E.; Kantorowicz, M.; Lipska, W.; Kaczmarzyk, T.; Potempa, J.; Grabiec, A.M. Gingival Fibroblast Activation by Porphyromonas Gingivalis Is Driven by TLR2 and Is Independent of the LPS-TLR4 Axis. Eur. J. Immunol. 2024, 54, 2350776. [Google Scholar] [CrossRef] [PubMed]
- Rams, T.E.; Sautter, J.D.; van Winkelhoff, A.J. Emergence of Antibiotic-Resistant Porphyromonas Gingivalis in United States Periodontitis Patients. Antibiotics 2023, 12, 1584. [Google Scholar] [CrossRef] [PubMed]
- Kramer, P.R.; Kramer, S.F.; Puri, J.; Grogan, D.; Guan, G. Multipotent Adult Progenitor Cells Acquire Periodontal Ligament Characteristics in Vivo. Stem Cells Dev. 2009, 18, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Cheng, X.; Zhuo, R.; Lan, J.; Wang, Y.; Shi, B.; Li, S. Novel Gene-activated Matrix with Embedded Chitosan/Plasmid DNA Nanoparticles Encoding PDGF for Periodontal Tissue Engineering. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 90, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, U.; Petit, J.; Teare, J. Cementogenesis and the Induction of Periodontal Tissue Regeneration by the Osteogenic Proteins of the Transforming Growth Factor-β Superfamily. J. Periodontal Res. 2009, 44, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, R.; Huang, Y.; Chen, J.; Yu, M.; Li, C.; Zhang, Y.; Chen, L.; Huang, X.; Yang, J. The Spatial Transcriptomic Landscape of Human Gingiva in Health and Periodontitis. Sci. China Life Sci. 2024, 67, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jing, J.; Zhou, C.; Fan, Y. Emerging Roles of Exosomes in Oral Diseases Progression. Int. J. Oral Sci. 2024, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, D.; Yu, P.; Wang, L.; Deng, C. Contextual Word Embedding for Biomedical Knowledge Extraction: A Rapid Review and Case Study. J. Heal. Inf. Res. 2024, 8, 158–179. [Google Scholar] [CrossRef]
- Zhou, Y. An Empirical Study on Fertility Proposals Using Multi-Grined Topic Analysis Methods. arXiv 2023, arXiv:2307.10025 2023. [Google Scholar]
- Suzuki, A.; Takai-Igarashi, T.; Nakaya, J.; Tanaka, H. Development of an Ontology for Periodontitis. J. Biomed. Semant. 2015, 6, 30. [Google Scholar] [CrossRef] [PubMed]
Topic | N. Publications | LLM |
---|---|---|
−1 | 43,271 | Periodontal Health and Treatment |
0 | 11,715 | Periodontal Stem Cell Regeneration |
1 | 7847 | Peri-Implant |
2 | 6649 | Soft Tissue Stability |
3 | 3796 | Oral Health Quality of Life |
4 | 2052 | Giant Cell Granuloma Cases |
5 | 1969 | Cone Beam Computed Tomography Applications |
6 | 1792 | Antimicrobial Photodynamic |
7 | 1438 | Therapy with Diode Laser |
8 | 1177 | Porphyromonas Gingivalis Effects |
9 | 1126 | Bond Strength of Dental Restorations |
10 | 1003 | Chlorhexidine and herbal mouthwash |
11 | 961 | Root Canal Therapy |
12 | 920 | Outcomes |
13 | 898 | Diabetes and Periodontal Disease |
14 | 854 | Oral Microbiome and Health |
15 | 851 | Gingival Recessions Treatment |
16 | 664 | Smoking and Periodontal Disease |
17 | 553 | Periodontal disease and pregnancy complications |
18 | 528 | Sinus Augmentation |
19 | 483 | Aggregatibacter |
20 | 470 | Actinomycetemcomitans Infections |
21 | 437 | Probiotic Periodontal Health |
22 | 415 | Periodontal–Cardiovascular |
23 | 364 | Disease Link |
24 | 327 | COVID-19 and Dental Practice |
25 | 314 | Rheumatoid Arthritis and Periodontal Disease |
26 | 300 | Titanium Surface Studies |
27 | 269 | Cleft Lip and Palate Treatment |
28 | 267 | Toothbrush Plaque Removal |
29 | 261 | Periodontitis–CKD association |
Topic | N. Publications | LLM |
---|---|---|
0 | 2922 | Oral Health and Quality of Life Factors |
1 | 3932 | Periodontitis microbes and host cell response |
2 | 2022 | Oral cancer and cell interactions |
3 | 3179 | Dental ridge augmentation techniques |
4 | 2134 | Laser wound healing in humans |
5 | 1895 | Orthodontic Treatment for Cleft Lip and Palate Patients |
6 | 2404 | Periodontal Disease Keywords |
7 | 2625 | Dental Implant Surface Properties and Biofilm Effects |
8 | 4006 | Immediate implant placement study |
9 | 3656 | Periodontitis Biomarker Analysis |
10 | 1417 | Periodontal Disease Evaluation in Dogs |
11 | 4552 | Dental implant studies |
12 | 1261 | Dental procedures and related genetics |
13 | 1282 | Periodontal disease and host immune response |
14 | 3136 | Undetermined |
15 | 5009 | Periodontal Disease Risk Factors |
16 | 5174 | Maxillary Incisor Treatment Series: Cases and Management Strategies |
17 | 2826 | Endodontic therapies and periodontal treatments in Dentistry |
18 | 2785 | 3D dental imaging evaluation using CBCT tomography |
19 | 2739 | Regenerative Dental Tissue Engineering |
20 | 3877 | Periodontitis Treatment Efficacy Study |
21 | 2088 | Gingival tissue grafts and treatments for periodontal recession |
22 | 3317 | Bone loss in stress-induced periodontitis |
23 | 4319 | Stem Cell Differentiation in Dental Tissues |
24 | 2652 | Dental Treatment Efficacy Study |
25 | 1577 | Streptococcus Growth and Gene Expression |
26 | 3531 | Oral Disease and Systemic Health Links |
27 | 1905 | Oral Diagnostic Analysis of Odontogenic Lesions |
28 | 2041 | Dental Implant Treatment Review |
29 | 3182 | Oral health and systemic diseases |
30 | 6526 | Oral Health Education and Care for All Age Groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, C.; Colangelo, M.T.; Meleti, M.; Guizzardi, S.; Calciolari, E. Topic Analysis of the Literature Reveals the Research Structure: A Case Study in Periodontics. Big Data Cogn. Comput. 2025, 9, 7. https://doi.org/10.3390/bdcc9010007
Galli C, Colangelo MT, Meleti M, Guizzardi S, Calciolari E. Topic Analysis of the Literature Reveals the Research Structure: A Case Study in Periodontics. Big Data and Cognitive Computing. 2025; 9(1):7. https://doi.org/10.3390/bdcc9010007
Chicago/Turabian StyleGalli, Carlo, Maria Teresa Colangelo, Marco Meleti, Stefano Guizzardi, and Elena Calciolari. 2025. "Topic Analysis of the Literature Reveals the Research Structure: A Case Study in Periodontics" Big Data and Cognitive Computing 9, no. 1: 7. https://doi.org/10.3390/bdcc9010007
APA StyleGalli, C., Colangelo, M. T., Meleti, M., Guizzardi, S., & Calciolari, E. (2025). Topic Analysis of the Literature Reveals the Research Structure: A Case Study in Periodontics. Big Data and Cognitive Computing, 9(1), 7. https://doi.org/10.3390/bdcc9010007