Previous Issue
Volume 9, October
 
 

Big Data Cogn. Comput., Volume 9, Issue 11 (November 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
33 pages, 2850 KB  
Review
Network Traffic Analysis Based on Graph Neural Networks: A Scoping Review
by Ruonan Wang, Jinjing Zhao, Hongzheng Zhang, Liqiang He, Hu Li and Minhuan Huang
Big Data Cogn. Comput. 2025, 9(11), 270; https://doi.org/10.3390/bdcc9110270 (registering DOI) - 24 Oct 2025
Abstract
Network traffic analysis is crucial for understanding network behavior and identifying underlying applications, protocols, and service groups. The increasing complexity of network environments, driven by the evolution of the Internet, poses significant challenges to traditional analytical approaches. Graph Neural Networks (GNNs) have recently [...] Read more.
Network traffic analysis is crucial for understanding network behavior and identifying underlying applications, protocols, and service groups. The increasing complexity of network environments, driven by the evolution of the Internet, poses significant challenges to traditional analytical approaches. Graph Neural Networks (GNNs) have recently garnered considerable attention in network traffic analysis due to their ability to model complex relationships within network flows and between communicating entities. This scoping review systematically surveys major academic databases, employing predefined eligibility criteria to identify and synthesize key research in the field, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology. We present a comprehensive overview of a generalized architecture for GNN-based traffic analysis and categorize recent methods into three primary types: node prediction, edge prediction, and graph prediction. We discuss challenges in network traffic analysis, summarize solutions from various methods, and provide practical recommendations for model selection. This review also compiles publicly available datasets and open-source code, serving as valuable resources for further research. Finally, we outline future research directions to advance this field. This work offers an updated understanding of GNN applications in network traffic analysis and provides practical guidance for researchers and practitioners. Full article
Show Figures

Figure 1

2 pages, 141 KB  
Correction
Correction: Jiang et al. Assessing the Transformation of Armed Conflict Types: A Dynamic Approach. Big Data Cogn. Comput. 2025, 9, 123
by Dong Jiang, Jun Zhuo, Peiwei Fan, Fangyu Ding, Mengmeng Hao, Shuai Chen, Jiping Dong and Jiajie Wu
Big Data Cogn. Comput. 2025, 9(11), 269; https://doi.org/10.3390/bdcc9110269 (registering DOI) - 24 Oct 2025
Abstract
There was an error in the original publication [...] Full article
30 pages, 2440 KB  
Article
Adaptive Segmentation and Statistical Analysis for Multivariate Big Data Forecasting
by Desmond Fomo and Aki-Hiro Sato
Big Data Cogn. Comput. 2025, 9(11), 268; https://doi.org/10.3390/bdcc9110268 (registering DOI) - 24 Oct 2025
Abstract
Forecasting high-volume, univariate, and multivariate longitudinal data streams is a critical challenge in Big Data systems, especially with constrained computational resources and pronounced data variability. However, existing approaches often neglect multivariate statistical complexity (e.g., covariance, skewness, kurtosis) of multivariate time series or rely [...] Read more.
Forecasting high-volume, univariate, and multivariate longitudinal data streams is a critical challenge in Big Data systems, especially with constrained computational resources and pronounced data variability. However, existing approaches often neglect multivariate statistical complexity (e.g., covariance, skewness, kurtosis) of multivariate time series or rely on recency-only windowing that discards informative historical fluctuation patterns, limiting robustness under strict resource budgets. This work makes two core contributions to big data forecasting. First, we establish a formal, multi-dimensional framework for quantifying “data bigness” across statistical, computational, and algorithmic complexities, providing a rigorous foundation for analyzing resource-constrained problems. Second, guided by this framework, we extend and validate the Adaptive High-Fluctuation Recursive Segmentation (AHFRS) algorithm for multivariate time series. By incorporating higher-order statistics such as covariance, skewness, and kurtosis, AHFRS improves predictive accuracy under strict computational budgets. We validate the approach in two stages. First, a real-world case study on a univariate Bitcoin time series provides a practical stress test using a Long Short-Term Memory (LSTM) network as a robust baseline. This validation reveals a significant increase in forecasting robustness, with our method reducing the Root Mean Squared Error (RMSE) by more than 76% in a challenging scenario. Second, its generalizability is established on synthetic multivariate data sets in Finance, Retail, and Healthcare using standard statistical models. Across domains, AHFRS consistently outperforms baselines; in our multivariate Finance simulation, RMSE decreases by up to 62.5% in Finance and Mean Absolute Percentage Error (MAPE) drops by more than 10 percentage points in Healthcare. These results demonstrate that the proposed framework and AHFRS advances the theoretical modeling of data complexity and the design of adaptive, resource-efficient forecasting pipelines for real-world, high-volume data ecosystems. Full article
Show Figures

Figure 1

72 pages, 9523 KB  
Article
Neural Network IDS/IPS Intrusion Detection and Prevention System with Adaptive Online Training to Improve Corporate Network Cybersecurity, Evidence Recording, and Interaction with Law Enforcement Agencies
by Serhii Vladov, Victoria Vysotska, Svitlana Vashchenko, Serhii Bolvinov, Serhii Glubochenko, Andrii Repchonok, Maksym Korniienko, Mariia Nazarkevych and Ruslan Herasymchuk
Big Data Cogn. Comput. 2025, 9(11), 267; https://doi.org/10.3390/bdcc9110267 (registering DOI) - 22 Oct 2025
Abstract
Thise article examines the reliable online detection and IDS/IPS intrusion prevention in dynamic corporate networks problems, where traditional signature-based methods fail to keep pace with new and evolving attacks, and streaming data is susceptible to drift and targeted “poisoning” of the training dataset. [...] Read more.
Thise article examines the reliable online detection and IDS/IPS intrusion prevention in dynamic corporate networks problems, where traditional signature-based methods fail to keep pace with new and evolving attacks, and streaming data is susceptible to drift and targeted “poisoning” of the training dataset. As a solution, we propose a hybrid neural network system with adaptive online training, a formal minimax false-positive control framework, and a robustness mechanism set (a Huber model, pruned learning rate, DRO, a gradient-norm regularizer, and a prioritized replay). In practice, the system combines modal encoders for traffic, logs, and metrics; a temporal GNN for entity correlation; a variational module for uncertainty assessment; a differentiable symbolic unit for logical rules; an RL agent for incident prioritization; and an NLG module for explanations and the preparation of forensically relevant artifacts. In this case, the applied components are connected via a cognitive layer (cross-modal fusion memory), a Bayesian-neural network fuser, and a single multi-task loss function. The practical implementation includes the pipeline “novelty detection → active labelling → incremental supervised update” and chain-of-custody mechanisms for evidential fitness. A significant improvement in quality has been experimentally demonstrated, since the developed system achieves an ROC AUC of 0.96, an F1-score of 0.95, and a significantly lower FPR compared to basic architectures (MLP, CNN, and LSTM). In applied validation tasks, detection rates of ≈92–94% and resistance to distribution drift are noted. Full article
(This article belongs to the Special Issue Internet Intelligence for Cybersecurity)
Show Figures

Figure 1

Previous Issue
Back to TopTop