A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network
Abstract
:1. Introduction
2. Modeling and Mathematical Formulation of the System
3. Controller Design and Its Stability
3.1. Neural Network Estimator
3.2. Super-Twisting Controller
- the states of the slave and master system are continuous and Lipschitz,
- the external disturbance and uncertainties are all bounded,
- the design parameters , and are positive;
4. Simulation Study by Applying Controller
4.1. Comparison 1
4.2. Comparison 2
4.3. Quantitative Results of Comparisons 1 and 2
4.4. Model-Free Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaslik, E.; Rădulescu, I.R. Dynamics of complex-valued fractional-order neural networks. Neural Netw. 2017, 89, 39–49. [Google Scholar] [CrossRef]
- Maiti, M.; Sunder, M.; Abishek, R.; Bingi, K.; Shaik, N.B.; Benjapolakul, W. Recent Advances and Applications of Fractional-Order Neural Networks. Eng. J. 2022, 26, 49–67. [Google Scholar] [CrossRef]
- Viera-Martin, E.; Gómez-Aguilar, J.F.; Solís-Pérez, J.E.; Hernández-Pérez, J.A.; Escobar-Jiménez, R.F. Artificial neural networks: A practical review of applications involving fractional calculus. Eur. Phys. J. Spéc. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Cao, J. Dynamics in fractional-order neural networks. Neurocomputing 2014, 142, 494–498. [Google Scholar] [CrossRef]
- Cao, J.; Udhayakumar, K.; Rakkiyappan, R.; Li, X.; Lu, J. A comprehensive review of continuous-/discontinuous-time fractional-order multidimensional neural networks. IEEE Trans. Neural. Netw. Learn. Syst. 2021; ahead of print. [Google Scholar]
- Chen, Y.Q.; Petras, I.; Xue, D. Fractional order control—A tutorial. In Proceedings of the 2009 American Control Conference (ACC), St. Louis, MO, USA, 10–12 July 2009; pp. 1397–1411. [Google Scholar]
- Gutiérrez, R.E.; Rosário, J.M.; Machado, J.T. Fractional Order Calculus: Basic Concepts and Engineering Applications. Math. Probl. Eng. 2010, 2010, 375858. [Google Scholar] [CrossRef]
- David, S.A.; Linares, J.L.; Pallone, E.M.J.A. Fractional order calculus: Historical apologia, basic concepts and some applications. Rev. Bras. Ensino Física 2011, 33, 4302. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Zhang, S.; Chen, Y.; Yu, Y. A survey of fractional-order neural networks. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Cleveland, OH, USA, 6–9 August 2017; Volume 58233, p. V009T07A024. [Google Scholar]
- Alsaade, F.W.; Jahanshahi, H.; Yao, Q.; Al-zahrani, M.S.; Alzahrani, A.S. On the Development of a Data-Driven-Based Fractional-Order Controller for Unmanned Aerial Vehicles. Fractal and Fractional. 2023, 7, 236. [Google Scholar] [CrossRef]
- Yousefpour, A.; Jahanshahi, H.; Castillo, O. Application of variable-order fractional calculus in neural networks: Where do we stand? Eur. Phys. J. Spec. Top. 2022, 231, 1753–1756. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü. S-Box-based video stenography application of variable-order fractional hopfield neural network (VFHNN). Eur. Phys. J. Spec. Top. 2022, 231, 2017–2035. [Google Scholar] [CrossRef]
- Zhou, M.; Feng, Y.; Xue, C.; Han, F. Deep convolutional neural network based fractional-order terminal sliding-mode control for robotic manipulators. Neurocomputing 2020, 416, 143–151. [Google Scholar] [CrossRef]
- Aslipour, Z.; Yazdizadeh, A. Identification of nonlinear systems using adaptive variable-order fractional neural networks (Case study: A wind turbine with practical results). Eng. Appl. Artif. Intell. 2019, 85, 462–473. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Zambrano-Serrano, E.; Bekiros, S.; Wei, Z.; Volos, C.; Castillo, O.; Aly, A.A. On the dynamical investigation and synchronization of variable-order fractional neural networks: The Hopfield-like neural network model. Eur. Phys. J. Spéc. Top. 2022, 231, 1757–1769. [Google Scholar] [CrossRef]
- Huang, L.-L.; Park, J.H.; Wu, G.-C.; Mo, Z.-W. Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 2020, 370, 112633. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Nguyen, T.G.; Fathurrochman, I.; Sadat, R.; Ali, M.R. Applications of neural networks for the novel designed of nonlinear fractional seventh order singular system. Eur. Phys. J. Spéc. Top. 2022, 231, 1831–1845. [Google Scholar] [CrossRef]
- Din, A.; Li, Y.; Yusuf, A.; Liu, J.; Aly, A.A. Impact of information intervention on stochastic hepatitis B model and its variable-order fractional network. Eur. Phys. J. Spéc. Top. 2022, 231, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Yasami, A.; Beigi, A.; Yousefpour, A. Application of long short-term memory neural network and optimal control to variable-order fractional model of HIV/AIDS. Eur. Phys. J. Spec. Top. 2022, 231, 1875–1884. [Google Scholar] [CrossRef]
- Kaçar, S. Digital circuit implementation and PRNG-based data security application of variable-order fractional Hopfield neural network under electromagnetic radiation using Grünwald-Letnikov method. Eur. Phys. J. Spéc. Top. 2022, 231, 1969–1981. [Google Scholar] [CrossRef]
- Gu, C.-Y.; Zheng, F.-X.; Shiri, B. Mittag-leffler stability analysis of tempered fractional neural networks with short memory and variable-order. Fractals 2021, 29, 21400296. [Google Scholar] [CrossRef]
- Wang, B.; Jahanshahi, H.; Arıcıoğlu, B.; Boru, B.; Kacar, S.; Alotaibi, N.D. A variable-order fractional neural network: Dynamical properties, data security application, and synchronization using a novel control algorithm with a finite-time estimator. J. Frankl. Inst. 2022; in press. [Google Scholar] [CrossRef]
- Yang, J.; Yao, H.; Wu, B. An efficient numerical method for variable order fractional functional differential equation. Appl. Math. Lett. 2018, 76, 221–226. [Google Scholar] [CrossRef]
- Heydari, M.H.; Avazzadeh, Z.; Yang, Y. A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl. Math. Comput. 2019, 352, 235–248. [Google Scholar] [CrossRef]
- Yousefpour, A.; Vahidi-Moghaddam, A.; Rajaei, A.; Ayati, M. Stabilization of nonlinear vibrations of carbon nanotubes using observer-based terminal sliding mode control. Trans. Inst. Meas. Control. 2019, 42, 1047–1058. [Google Scholar] [CrossRef]
- Yousefpour, A.; Hosseinloo, A.H.; Yazdi, M.R.H.; Bahrami, A. Disturbance observer–based terminal sliding mode control for effective performance of a nonlinear vibration energy harvester. J. Intell. Mater. Syst. Struct. 2020, 31, 1495–1510. [Google Scholar] [CrossRef]
- Wang, B.; Derbeli, M.; Barambones, O.; Yousefpour, A.; Jahanshahi, H.; Bekiros, S.; Aly, A.A.; Alharthi, M.M. Experimental validation of disturbance observer-based adaptive terminal sliding mode control subject to control input limitations for SISO and MIMO systems. Eur. J. Control. 2022, 63, 151–163. [Google Scholar] [CrossRef]
- Yousefpour, A.; Jahanshahi, H.; Bekiros, S.; Muñoz-Pacheco, J.M. Robust adaptive control of fractional-order memristive neural networks. In Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 501–515. [Google Scholar]
- Yousefpour, A.; Jahanshahi, H.; Gan, D. Fuzzy integral sliding mode technique for synchronization of memristive neural networks. In Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 485–500. [Google Scholar] [CrossRef]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 10. [Google Scholar]
- Kao, Y.; Li, Y.; Park, J.H.; Chen, X. Mittag–Leffler Synchronization of Delayed Fractional Memristor Neural Networks via Adaptive Control. IEEE Trans. Neural Networks Learn. Syst. 2020, 32, 2279–2284. [Google Scholar] [CrossRef] [PubMed]
- Mani, P.; Rajan, R.; Shanmugam, L.; Joo, Y.H. Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inf. Sci. 2019, 491, 74–89. [Google Scholar] [CrossRef]
- Tao, G. Adaptive Control Design and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 37. [Google Scholar] [CrossRef]
- Åström, K.J. Theory and applications of adaptive control—A survey. Automatica 1983, 19, 471–486. [Google Scholar] [CrossRef]
- Xi, Y.; Yu, Y.; Zhang, S.; Hai, X. Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control. Chin. Phys. B 2018, 27, 010202. [Google Scholar] [CrossRef]
- Petersen, I.R.; Tempo, R. Robust control of uncertain systems: Classical results and recent developments. Automatica 2014, 50, 1315–1335. [Google Scholar] [CrossRef]
- Kaslik, E.; Sivasundaram, S. Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 2012, 32, 245–256. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Yousefpour, A.; Jahanshahi, H.; Munoz-Pacheco, J.M.; Bekiros, S.; Wei, Z. A fractional-order hyper-chaotic economic system with transient chaos. Chaos Solitons Fractals 2020, 130, 109400. [Google Scholar] [CrossRef]
- Farrell, M.H.; Liang, T.; Misra, S. Deep Neural Networks for Estimation and Inference. Econometrica 2021, 89, 181–213. [Google Scholar] [CrossRef]
- Levant, A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control. 1993, 58, 1247–1263. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. Strict Lyapunov Functions for the Super-Twisting Algorithm. IEEE Trans. Autom. Control 2012, 57, 1035–1040. [Google Scholar] [CrossRef]
- Meng, X.; Wu, Z.; Gao, C.; Jiang, B.; Karimi, H.R. Finite-Time Projective Synchronization Control of Variable-Order Fractional Chaotic Systems via Sliding Mode Approach. IEEE Trans. Circuits Syst. II: Express Briefs 2021, 68, 2503–2507. [Google Scholar] [CrossRef]
Method | Average Norm of Errors | Average Norm of Control Inputs |
---|---|---|
Proposed technique | 4.9745 × 10−4 | 0.0141 |
FTSM while parameters are selected to avoid chattering (comparison 1) | 0.0011 | 0.0092 |
FTSM while parameters are selected to reduce error in the results (comparison 2) | 4.8644 × 10−4 | 0.0126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaade, F.W.; Al-zahrani, M.S.; Yao, Q.; Jahanshahi, H. A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network. Fractal Fract. 2023, 7, 349. https://doi.org/10.3390/fractalfract7050349
Alsaade FW, Al-zahrani MS, Yao Q, Jahanshahi H. A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network. Fractal and Fractional. 2023; 7(5):349. https://doi.org/10.3390/fractalfract7050349
Chicago/Turabian StyleAlsaade, Fawaz W., Mohammed S. Al-zahrani, Qijia Yao, and Hadi Jahanshahi. 2023. "A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network" Fractal and Fractional 7, no. 5: 349. https://doi.org/10.3390/fractalfract7050349
APA StyleAlsaade, F. W., Al-zahrani, M. S., Yao, Q., & Jahanshahi, H. (2023). A Model-Free Finite-Time Control Technique for Synchronization of Variable-Order Fractional Hopfield-like Neural Network. Fractal and Fractional, 7(5), 349. https://doi.org/10.3390/fractalfract7050349