Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Data
2.2. Weather Data under Rainfed Condition
2.3. Weather Data under Irrigation Condition
2.4. Experimental Design, Treatments, Soil Physical and Chemical Analysis
2.5. Soil Water Content Measurement
2.6. Plant Materials
2.7. Plant Growth Analysis
2.8. Modelling Approach
2.8.1. Description of the APSIM-Maize Module
2.8.2. Description of the DSSAT-CERES-Maize Model
2.8.3. Input Dataset into the APSIM-Maize and DSSAT-CERES-Maize Models
2.9. Parameterization, Calibration and Validation of the APSIM-Maize and DSSAT-CERES-Maize Models
2.9.1. Parameterization and Calibration of the APSIM-Maize and DSSAT-CERES-Maize Models
2.9.2. Validation of the APSIM-Maize and DSSAT-CERES-Maize Models
2.10. Data Analysis and Model Evaluation
Analysis of Variance
2.11. Evaluation of the APSIM-Maize and DSSAT-CERES-Maize Models
3. Results and Discussions
3.1. Analysis of Variance for the Sowing Dates, Cultivars, N Rate and Yield Components
3.1.1. Rainfed Condition
3.1.2. Irrigated Condition
3.2. Performance of APSIM-Maize and DSSAT-CERES-Maize Models in Simulating Growth and Yield for Three Maize Cultivars
3.2.1. Phenology
3.2.2. Biomass and Grain Yields
3.2.3. Grain Unit wt. and Grain Number per Square Meter
3.2.4. Leaf Area Index
3.2.5. Simulation of Root Soil Water Content in the Soil Layers
3.3. APSIM-Maize and DSSAT-CERES-Maize Model Validation
3.3.1. Model Validation
Phenology (Anthesis and Maturity Days after Planting)
3.3.2. Biomass, Grain Yield and Leaf Area Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SD1 | SD2 | SD3 | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivars | ZMS 606 | 30G19 | PHB 30B50 | ZMS 606 | PHB 30G19 | PHB 30B50 | ZMS 606 | PHB 30G19 | PHB 30B50 | ||||||||||||||||||
N rate | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Land preparation | 29 November 2016 | ||||||||||||||||||||||||||
Basal dressing/planting | 12 December 2016 | 26 December 2016 | 9 January 2017 | ||||||||||||||||||||||||
Top dressing | 30 January 2017 | 17 February 2017 | 3 March 2017 | ||||||||||||||||||||||||
Herbicides | 14 December 2016 | ||||||||||||||||||||||||||
Herbicides | 23 December 2016 & 18 January 2017 | ||||||||||||||||||||||||||
Weeding | 17 January 2017 | ||||||||||||||||||||||||||
Pesticides | 29 December 2016 | ||||||||||||||||||||||||||
Phenological stages | |||||||||||||||||||||||||||
Emergence | 19 December 2016 | 19 December 2016 | 89 December 2016 | 4 January 2017 | 4 January 2017 | 3 January 2017 | 17 January 2017 | 16 January 2017 | 17 January 2017 | ||||||||||||||||||
V6 | 6 January 2017 | 6 January 2017 | 6 January 2017 | 20 January 2017 | 20 January 2017 | 19 January 2017 | 6 February 2017 | 6 February 2017 | 5 February 2017 | ||||||||||||||||||
R1 | 15 February 2017 | 15 February 2017 | 13 February 2017 | 4 March 2017 | 2 March 2017 | 4 March 2017 | 19 March 2017 | 19 March 2017 | 17 March 2017 | ||||||||||||||||||
R4 | 14 March 2017 | 19 March 2017 | 12 March 2017 | 28 March 2017 | 28 March 2017 | 26 March 2017 | 12 April 2017 | 12 April 2017 | 10 April 2017 | ||||||||||||||||||
R6 | 14 April 2017 | 15 April 2017 | 13 April 2017 | 28 April 2017 | 27 April 2017 | 27 April 2017 | 18 May 2017 | 18 May 2017 | 19 May 2017 | ||||||||||||||||||
Biomass sampling | |||||||||||||||||||||||||||
V6 | 6 January 2017 | 6 January 2017 | 6 January 2017 | 20 January 2017 | 20 January 2017 | 20 January 2017 | 6 February 2017 | 6 February 2017 | 6 February 2017 | ||||||||||||||||||
R1 | 15 February 2017 | 15 February 2017 | 13 February 2017 | 4 March 2017 | 4 March 2017 | 2 March 2017 | 21 March 2017 | 21 March 2017 | 21 March 2017 | ||||||||||||||||||
R4 | 16 March 2017 | 16 March 2017 | 16 March 2017 | 30 March 2017 | 30 March 2017 | 28 March 2017 | 13 April 2017 | 13 April 2017 | 13 April 2017 | ||||||||||||||||||
Final harvest | 3 May 2017 | 15 May 2017 | 1 January 2017 |
Anthesis | Maturity | mLAI | Biomass | Grain | Unit wt | Grain no | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sowing Date 1 | |||||||||||||||||||||
Trt | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD |
V1N1 | 65 | 64 | −1.54 | 123 | 123 | 0.00 | 3.70 | 1.54 | −58.38 | 11.40 | 13.70 | 20.18 | 9.20 | 8.80 | −4.35 | 0.37 | 0.38 | 2.15 | 2401 | 2322 | 6.91 |
V1N2 | 65 | 64 | −1.54 | 123 | 123 | 0.00 | 3.29 | 1.55 | −52.89 | 10.90 | 13.70 | 25.69 | 8.70 | 8.70 | 0.00 | 0.38 | 0.38 | 0.53 | 2276 | 2328 | 2.28 |
V1N3 | 65 | 64 | −1.54 | 123 | 123 | 0.00 | 3.15 | 1.56 | −50.48 | 9.80 | 13.80 | 40.82 | 7.90 | 8.80 | 11.39 | 0.37 | 0.37 | 0.00 | 2128 | 2341 | 10.01 |
V2N1 | 65 | 65 | 0.00 | 124 | 124 | 0.00 | 3.79 | 1.96 | −48.28 | 11.20 | 14.80 | 32.14 | 8.40 | 8.80 | 4.76 | 0.37 | 0.38 | 2.70 | 2251 | 2297 | 2.04 |
V2N2 | 65 | 65 | 0.00 | 124 | 124 | 0.00 | 3.68 | 1.97 | −46.47 | 10.50 | 14.70 | 40.00 | 7.90 | 8.80 | 11.39 | 0.41 | 0.38 | −7.32 | 1922 | 2299 | 19.61 |
V2N3 | 65 | 65 | 0.00 | 124 | 124 | 0.00 | 4.45 | 1.98 | −55.51 | 13.10 | 14.80 | 12.98 | 9.70 | 8.80 | −9.28 | 0.38 | 0.38 | 0.00 | 2519 | 2305 | −8.50 |
V3N1 | 63 | 64 | 1.59 | 122 | 122 | 0.00 | 4.22 | 1.54 | −63.51 | 12.50 | 14.40 | 15.20 | 9.50 | 10.10 | 6.32 | 0.51 | 0.51 | 0.00 | 1867 | 1996 | 6.91 |
V3N2 | 63 | 64 | 1.59 | 122 | 122 | 0.00 | 4.56 | 1.55 | −66.01 | 12.70 | 14.50 | 14.17 | 9.60 | 10.20 | 6.25 | 0.50 | 0.51 | 2.00 | 1952 | 2001 | 2.51 |
V3N3 | 63 | 64 | 1.59 | 122 | 122 | 0.00 | 5.00 | 1.56 | −68.80 | 14.20 | 14.50 | 2.11 | 10.80 | 10.20 | −5.56 | 0.52 | 0.51 | −1.92 | 2063 | 2012 | −2.47 |
Sowing Date 2 | |||||||||||||||||||||
V1N1 | 67 | 64 | −4.48 | 123 | 127 | 3.25 | 3.57 | 1.56 | −56.30 | 9.10 | 12.00 | 31.87 | 6.90 | 7.60 | 10.14 | 0.32 | 0.36 | 12.50 | 2113 | 2195 | 3.88 |
V1N2 | 67 | 64 | −4.48 | 123 | 127 | 3.25 | 3.45 | 1.56 | −54.78 | 10.40 | 11.90 | 14.42 | 8.20 | 7.50 | −8.54 | 0.34 | 0.34 | 0.00 | 2421 | 2194 | −9.38 |
V1N3 | 67 | 64 | −4.48 | 123 | 127 | 3.25 | 3.26 | 1.60 | −50.92 | 8.60 | 12.00 | 39.53 | 6.50 | 7.60 | 16.92 | 0.30 | 0.34 | 13.33 | 2190 | 2218 | 1.28 |
V2N1 | 66 | 65 | −1.52 | 122 | 128 | 4.92 | 3.75 | 1.91 | −49.07 | 10.20 | 12.80 | 25.49 | 7.30 | 7.60 | 4.11 | 0.34 | 0.36 | 5.88 | 2146 | 2146 | 0.00 |
V2N2 | 66 | 65 | −1.52 | 122 | 128 | 4.92 | 3.58 | 1.93 | −46.09 | 9.30 | 12.70 | 36.56 | 6.50 | 7.50 | 15.38 | 0.30 | 0.35 | 16.67 | 2125 | 2154 | 1.36 |
V2N3 | 66 | 65 | −1.52 | 122 | 128 | 4.92 | 4.08 | 1.94 | −52.45 | 11.20 | 12.90 | 15.18 | 7.90 | 7.70 | −2.53 | 0.34 | 0.36 | 5.88 | 2311 | 2158 | −6.62 |
V3N1 | 68 | 62 | −8.82 | 122 | 123 | 0.82 | 3.64 | 1.47 | −59.62 | 10.50 | 12.10 | 15.24 | 7.90 | 7.90 | 0.00 | 0.43 | 0.42 | −2.33 | 1861 | 1908 | 2.53 |
V3N2 | 68 | 62 | −8.82 | 122 | 123 | 0.82 | 3.20 | 1.47 | −54.06 | 7.30 | 12.00 | 64.38 | 5.30 | 7.90 | 49.06 | 0.35 | 0.41 | 17.14 | 1497 | 1907 | 27.39 |
V3N3 | 68 | 62 | −8.82 | 122 | 123 | 0.82 | 3.18 | 1.50 | −52.83 | 11.00 | 12.30 | 11.82 | 8.00 | 8.10 | 1.25 | 0.37 | 0.42 | 13.51 | 1908 | 1929 | 1.10 |
Sowing Date 3 | |||||||||||||||||||||
V1N1 | 66 | 65 | −1.52 | 129 | 130 | 0.78 | 3.18 | 1.60 | −49.69 | 10.10 | 10.80 | 6.93 | 6.00 | 5.80 | −3.33 | 0.32 | 0.21 | −34.38 | 2300 | 2793 | 21.43 |
V1N2 | 66 | 65 | −1.52 | 129 | 130 | 0.78 | 3.34 | 1.59 | −52.40 | 8.90 | 10.70 | 20.22 | 6.50 | 5.80 | −10.77 | 0.31 | 0.21 | −32.26 | 2425 | 2755 | 13.61 |
V1N3 | 66 | 65 | −1.52 | 129 | 130 | 0.78 | 3.34 | 1.59 | −52.40 | 8.70 | 10.60 | 21.84 | 6.10 | 5.60 | −8.20 | 0.32 | 0.20 | −37.50 | 2068 | 2789 | 34.86 |
V2N1 | 69 | 68 | −1.45 | 129 | 134 | 3.88 | 3.61 | 2.18 | −39.61 | 9.50 | 11.70 | 23.16 | 6.10 | 5.30 | −13.11 | 0.31 | 0.19 | −38.71 | 2043 | 2768 | 35.49 |
V2N2 | 69 | 68 | −1.45 | 129 | 134 | 3.88 | 4.02 | 2.18 | −45.77 | 9.60 | 11.80 | 22.92 | 6.10 | 5.50 | −9.84 | 0.33 | 0.20 | −39.39 | 2243 | 2765 | 23.27 |
V2N3 | 69 | 68 | −1.45 | 129 | 134 | 3.88 | 3.40 | 2.17 | −36.18 | 10.10 | 11.90 | 17.82 | 6.10 | 5.60 | −8.20 | 0.33 | 0.20 | −39.55 | 2331 | 2745 | 17.76 |
V3N1 | 67 | 62 | −7.46 | 130 | 127 | −2.31 | 3.55 | 1.45 | −59.15 | 8.40 | 10.30 | 22.62 | 5.60 | 5.50 | −1.79 | 0.35 | 0.24 | −31.43 | 1568 | 2291 | 46.11 |
V3N2 | 67 | 62 | −7.46 | 130 | 127 | −2.31 | 3.59 | 1.44 | −59.89 | 10.00 | 10.10 | 1.00 | 6.90 | 5.40 | −21.74 | 0.33 | 0.24 | −27.27 | 1628 | 2266 | 39.19 |
V3N3 | 67 | 62 | −7.46 | 130 | 127 | −2.31 | 3.72 | 1.44 | −61.29 | 9.30 | 10.10 | 8.60 | 6.30 | 5.30 | −15.87 | 0.29 | 0.23 | −20.69 | 1521 | 2298 | 51.08 |
Anthesis | Maturity | mLAI | Biomass | Grain | Unit wt | Grain no | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sowing Date 1 | |||||||||||||||||||||
Trt | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD | Obs | Sim | %PD |
V1N1 | 65 | 65 | 0.00 | 123 | 124 | 0.81 | 3.70 | 3.18 | −14.05 | 11.40 | 15.40 | 35.09 | 9.20 | 8.90 | −3.26 | 0.37 | 0.39 | 4.84 | 2401 | 2261 | −0.86 |
V1N2 | 65 | 65 | 0.00 | 123 | 124 | 0.81 | 3.29 | 3.19 | −3.04 | 10.90 | 15.40 | 41.28 | 8.70 | 8.90 | 2.30 | 0.38 | 0.39 | 3.17 | 2276 | 2262 | −0.62 |
V1N3 | 65 | 65 | 0.00 | 123 | 124 | 0.81 | 3.15 | 3.19 | 1.27 | 9.80 | 15.40 | 57.14 | 7.90 | 8.90 | 12.66 | 0.37 | 0.39 | 5.41 | 2128 | 2262 | 6.30 |
V2N1 | 65 | 65 | 0.00 | 124 | 124 | 0.00 | 3.79 | 3.19 | −15.83 | 11.20 | 15.50 | 38.39 | 8.40 | 8.90 | 5.95 | 0.37 | 0.38 | 2.70 | 2251 | 2324 | 3.24 |
V2N2 | 65 | 65 | 0.00 | 124 | 124 | 0.00 | 3.68 | 3.19 | −13.32 | 10.50 | 15.50 | 47.62 | 7.90 | 8.90 | 12.66 | 0.41 | 0.38 | −7.32 | 1922 | 2324 | 20.92 |
V2N3 | 65 | 65 | 0.00 | 124 | 124 | 0.00 | 4.45 | 3.19 | −28.31 | 13.10 | 15.50 | 18.32 | 9.70 | 8.90 | −8.25 | 0.38 | 0.38 | 0.00 | 2519 | 2324 | −7.74 |
V3N1 | 63 | 65 | 3.17 | 122 | 123 | 0.82 | 4.22 | 3.14 | −25.59 | 12.50 | 15.30 | 22.40 | 9.50 | 8.00 | −15.79 | 0.51 | 0.43 | −15.69 | 1867 | 1851 | −0.86 |
V3N2 | 63 | 65 | 3.17 | 122 | 123 | 0.82 | 4.56 | 3.14 | −31.14 | 12.70 | 15.30 | 20.47 | 9.60 | 8.00 | −16.67 | 0.50 | 0.43 | −14.00 | 1952 | 1852 | −5.12 |
V3N3 | 63 | 65 | 3.17 | 122 | 123 | 0.82 | 5.00 | 3.14 | −37.20 | 14.20 | 15.30 | 7.75 | 10.80 | 8.00 | −25.93 | 0.52 | 0.43 | −17.31 | 2063 | 1852 | −10.23 |
Sowing Date 2 | |||||||||||||||||||||
V1N1 | 67 | 67 | 0.00 | 123 | 130 | 5.69 | 3.57 | 3.34 | −6.44 | 9.10 | 15.40 | 69.23 | 6.90 | 8.70 | 26.09 | 0.32 | 0.40 | 25.00 | 2113 | 2175 | 2.93 |
V1N2 | 67 | 67 | 0.00 | 123 | 130 | 5.69 | 3.45 | 3.34 | −3.19 | 10.40 | 15.80 | 51.92 | 8.20 | 8.70 | 6.10 | 0.34 | 0.40 | 17.65 | 2421 | 2175 | −10.16 |
V1N3 | 67 | 67 | 0.00 | 123 | 130 | 5.69 | 3.26 | 3.34 | 2.45 | 8.60 | 15.80 | 83.72 | 6.50 | 8.70 | 33.85 | 0.30 | 0.40 | 33.33 | 2190 | 2175 | −0.68 |
V2N1 | 66 | 67 | 1.52 | 122 | 128 | 4.92 | 3.75 | 3.34 | −10.93 | 10.20 | 15.80 | 54.90 | 7.30 | 8.80 | 20.55 | 0.34 | 0.38 | 11.76 | 2146 | 2290 | 6.71 |
V2N2 | 66 | 67 | 1.52 | 122 | 128 | 4.92 | 3.58 | 3.34 | −6.70 | 9.30 | 15.80 | 69.89 | 6.50 | 8.80 | 35.38 | 0.30 | 0.38 | 26.67 | 2125 | 2290 | 7.76 |
V2N3 | 66 | 67 | 1.52 | 122 | 128 | 4.92 | 4.08 | 3.35 | −17.89 | 11.20 | 15.80 | 41.07 | 7.90 | 8.80 | 11.39 | 0.34 | 0.38 | 11.76 | 2311 | 2290 | −0.91 |
V3N1 | 68 | 65 | −4.41 | 122 | 125 | 2.46 | 3.64 | 3.29 | −9.62 | 10.50 | 15.60 | 48.57 | 7.90 | 7.70 | −2.53 | 0.43 | 0.43 | 0.00 | 1861 | 1790 | −3.82 |
V3N2 | 68 | 65 | −4.41 | 122 | 125 | 2.46 | 3.20 | 3.29 | 2.81 | 7.30 | 15.60 | 113.70 | 5.30 | 7.70 | 45.28 | 0.35 | 0.43 | 22.86 | 1497 | 1790 | 19.57 |
V3N3 | 68 | 65 | −4.41 | 122 | 125 | 2.46 | 3.18 | 3.29 | 3.46 | 11.00 | 15.60 | 41.82 | 8.00 | 7.70 | −3.75 | 0.37 | 0.43 | 16.22 | 1908 | 1790 | −6.18 |
Sowing Date 3 | |||||||||||||||||||||
V1N1 | 66 | 65 | −1.52 | 129 | 130 | 0.78 | 3.18 | 3.05 | −4.09 | 10.10 | 13.50 | 33.66 | 6.00 | 7.50 | 25.00 | 0.32 | 0.29 | −9.38 | 2300 | 2586 | 12.43 |
V1N2 | 66 | 65 | −1.52 | 129 | 130 | 0.78 | 3.34 | 3.05 | −8.68 | 8.90 | 13.50 | 51.69 | 6.50 | 7.50 | 15.38 | 0.31 | 0.29 | −6.45 | 2425 | 2586 | 6.64 |
V1N3 | 66 | 65 | −1.52 | 129 | 130 | 0.78 | 3.34 | 3.05 | −8.68 | 8.70 | 13.50 | 55.17 | 6.10 | 7.50 | 22.95 | 0.32 | 0.29 | −9.38 | 2068 | 2586 | 25.05 |
V2N1 | 69 | 66 | −4.35 | 129 | 129 | 0.00 | 3.61 | 3.05 | −15.51 | 9.50 | 13.50 | 42.11 | 6.10 | 7.30 | 19.67 | 0.31 | 0.28 | −9.68 | 2043 | 2582 | 26.38 |
V2N2 | 69 | 66 | −4.35 | 129 | 129 | 0.00 | 4.02 | 3.05 | −24.13 | 9.60 | 13.50 | 40.63 | 6.10 | 7.30 | 19.67 | 0.33 | 0.28 | −15.15 | 2243 | 2582 | 15.11 |
V2N3 | 69 | 66 | −4.35 | 129 | 129 | 0.00 | 3.40 | 3.05 | −10.29 | 10.10 | 13.50 | 33.66 | 6.10 | 7.30 | 19.67 | 0.33 | 0.28 | −15.15 | 2331 | 2582 | 10.77 |
V3N1 | 67 | 64 | −4.48 | 130 | 128 | −1.54 | 3.55 | 3.02 | −14.93 | 8.40 | 13.60 | 61.90 | 5.60 | 7.20 | 28.57 | 0.35 | 0.35 | 0.00 | 1568 | 2053 | 30.93 |
V3N2 | 67 | 64 | −4.48 | 130 | 128 | −1.54 | 3.59 | 3.02 | −15.88 | 10.00 | 13.60 | 36.00 | 6.90 | 7.20 | 4.35 | 0.33 | 0.35 | 6.06 | 1628 | 2053 | 26.11 |
V3N3 | 67 | 64 | −4.48 | 130 | 128 | −1.54 | 3.72 | 3.02 | −18.82 | 9.30 | 13.60 | 46.24 | 6.30 | 7.20 | 14.29 | 0.29 | 0.35 | 20.69 | 1521 | 2053 | 34.98 |
References
- Lukeba, J.-C.L.; Vumilia, R.K.; Nkongolo, K.C.K.; Mwabila, M.L.; Tsumbu, M. Growth and leaf area index simulation in maize (Zea mays L.) under small-scale farm conditions in a sub-Saharan African region. Am. J. Plant Sci. 2013, 4, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Chisanga, C.B.; Phiri, E.; Chizumba, S.; Sichingabula, H. Evaluating CERES-maize model using planting dates and nitrogen fertilizer in Zambia. J. Agric. Sci. 2015, 7, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Tsimba, R. Development of a Decision Support System to Determine the Best Maize (Zea mays., L ) Hybrid—Planting Date Option under Typical New Zealand Management Systems; Massey University: Palmerston North, New Zealand, 2011. [Google Scholar]
- Soltani, A.; Hoogenboom, G. Minimum data requirements for parameter estimation of stochastic weather generators. Clim. Res. 2003, 25, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.E.; Holzworth, N.I.H.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; McLean, G.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Batchelor, W.D.; Hunt, L.A.; Boote, K.J.; Singh, U.; Uryasev, O.; Bowen, W.T.; et al. Decision Support System for Agrotechnology Transfer; Version 4.0 [CD-ROM]; University of Hawaii: Honolulu, HI, USA, 2004. [Google Scholar]
- Lizaso, J.I.; Boote, K.J.; Jones, J.W.; Porter, C.H.; Echarte, L.; Westgate, M.E.; Sonohat, G. CSM-IXIM: A New Maize simulation model for DSSAT version 4.5. Agron. J. 2011, 103, 766–779. [Google Scholar] [CrossRef]
- Jones, D.S.; Creel, R.C.; Rios, B.A. Carbon isotope stratigraphy and correlation of depositional sequences in the Upper Ordovician Ely Springs Dolostone, eastern Great Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 458, 85–101. [Google Scholar] [CrossRef]
- Timsina, J.; Godwin, D.; Humphreys, E.; Yadvinder-Singh Bijay-Singh Kukal, S.S.S.; Smith, D. Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model. Agric. Water Manag. 2008, 95, 1099–1110. [Google Scholar] [CrossRef]
- Jones, J.W.; Tsuji, G.Y.; Hoogenboom, G.; Hunt, L.A.; Thornton, P.K.; Wilkens, P.W.; Imamura, D.T.; Bowen, W.T.; Singh, U. Underst. Options Agric. Prod. Syst. Approaches Sustain. Agric. Dev. In Decision Support System for Agrotechnology Transfer: DSSAT v3.; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; Volume 7, pp. 157–177. [Google Scholar]
- Sadras, V.; Rodriguez, D. Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia. Field Crop. Res. 2010, 118, 297–305. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, B.; Akhter, S.; Ali IAmarasingha, R.; Chaki, A.K.; Chen, C.; Choudhury, B.U.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crop. Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Snow, V.O.; Houlbrooke, D.J.; Huth, N.I. Predicting soil water, tile drainage, and runoff in a mole-tile drained soil. N. Z. J. Agric. Res. 2007, 50, 13–24. [Google Scholar] [CrossRef]
- Wang, N.; Wang, E.; Wang, J.; Zhang, J.; Zheng, B.; Huang, Y.; Tan, M. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. For. Meteorol. 2018, 250–251, 319–329. [Google Scholar] [CrossRef]
- Monsi, M.; Saeki, T. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2004, 95, 549–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitters, C.J.T.; Toussaint, H.A.J.M.; Goudriaan, J. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric. For. Meteorol. 1986, 38, 217–229. [Google Scholar] [CrossRef]
- Ritchie, J.T. Model for predicting evaporation from row crops with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Achieng, J.; Kananpiu, F.; Chauhan, Y.; Rodriguez, D. Sustainable intensification of maize-bean production among smallholder farmers in western Kenya. In Proceedings of the 5th World Congress on Conservation Agriculture, Brisbane, Australia, 26–29 September 2011. [Google Scholar]
- Holzworth, D.P.; Huth, N.I.; DeVoil, P.G.; Zurcher, E.J.; Herrman, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Show, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Gaydon, D. The APSIM Model—An overview. In The SAARC-Australia Project-Developing Capacity in Cropping Systems Modelling for South Asia; Gaydon, D.S., Saiyed, I., Roth, C.R., Eds.; SAARC Agriculture. Centre: Dhaka, Bangladesh, 2014; pp. 15–31. [Google Scholar]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- Tsimba, R.; Edmeades, G.O.; Millner, J.P.; Kemp, P.D. The effect of planting date on maize grain yields and yield components. Field Crop. Res. 2013, 150, 145–155. [Google Scholar] [CrossRef]
- Bationo, A.; Tabo, R.; Kihara, J.; Hoogenboom, G.; Traore, P.C.S.; Boote, K.J.; Jones, J.W. Building capacity for modeling in Africa. In Improving Soil Fertility Recommendations in Africa Using the Decision Support System for Agrotechnology Transfer (DSSAT); Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–7. [Google Scholar]
- Ahmed, M.; Aslam, M.A.; Hassan, F.U.; Asif, M.; Hayat, R. Use of APSIM to model nitrogen use efficiency of rain-fed wheat. Int. J. Agric. Biol. 2014, 16, 461–470. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Du Plessis, J. Maize production. Resour. Cent. Dir. Agric. Inf. Serv. 2003, 1–38. [Google Scholar]
- Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, K.M.; Kisekka, I.; Martorano, L.G. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric. For. Meteorol. 2015, 214, 252–265. [Google Scholar] [CrossRef]
- Sato, J.H.; de Figueiredo, C.C.; Marchão, R.L.; Madari, B.E.; Benedito, L.E.C.; Busato, J.G.; de Souza, D.M. Methods of soil organic carbon determination in Brazilian savannah soils. Sci. Agric. 2014, 71, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Willey, P.H.; Rawls, W.J. Field and pond hydrologic analyses with the SPAW Model. In Proceedings of the 2006 ASABE Annual International Meeting, Portland, OR, USA, 9–12 July 2006; pp. 1–14. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil. Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Chisanga, C.B.; Phiri, E.; Chinene, V.R.N.; Chabala, L.M. Projecting maize yield under local-scale climate change scenarios using crop models: Sensitivity to sowing dates, cultivar, and nitrogen fertilizer rates. Food Energy Secur. 2020, 9, e231. [Google Scholar] [CrossRef]
- Sentek. Calibration Manual: For Sentek Soil Moisture Sensors Version 2.0; Sentek Pty Ltd.: Stepney, Australia, 2011; p. 5069. [Google Scholar]
- Asseng, S.; Keating, B.A.; Fillery, I.R.P.; Gregory, P.J.; Bowden, J.W.; Turner, N.C.; Palta, J.A.; Abrecht, D.G. Performance of the APSIM-wheat model in Western Australia. Field Crop Res. 1998, 57, 163–179. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Wilkens, P.W.; Tsuji, G.Y. DSSAT v3; University of Hawaii: Honolulu, HI, USA, 1999; Volume 4. [Google Scholar]
- Karuma, A.N.; Gachene, C.K.K.; Gicheru, P.T.; Mtakwa, P.W.; Amuri, N. Effects of tillage and cropping systems on maize and beans yield and selected yield components in a semi-arid area of Kenya. Trop. Subtrop. Agroecosyst. 2016, 19, 167–179. [Google Scholar]
- NSW Department of Primary Industries. Maize Growth and Development; State of New South Wales: Sydney, Australia, 2009.
- Keating, B.A.; Gaydon, D.; Huth, N.I.; Probert, M.E.; Verburg, K.; Smith, C.J.; Bond, W. Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. Eur. J. Agron. 2002, 18, 159–169. [Google Scholar] [CrossRef]
- Brown, H.E.; Huth, N.I.; Holzworth, D.P.; Teixeira, E.I.; Zyskowski, R.F.; Hargreaves, J.N.G.; Moot, D.J. Plant modelling framework: Software for building and running crop models on the APSIM platform. Environ. Model Softw. 2014, 62, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Archontoulis, S.V.; Miguez, F.E.; Moore, K.J. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model Softw. 2014, 62, 465–477. [Google Scholar] [CrossRef]
- Dietzel, R. A Comparison of Carbon Storage Potential in Corn- and Prairie-Based Agroecosystems; Iowa State University: Ames, IA, USA, 2014. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Wilkens, P.W.; Porter, C.H.; Tsuji, G.Y. Decision Support System for Agrotechnology Transfer Version 4.0; DSSAT v4.5: Crop Model Documentation; University of Hawaii: Honolulu, HI, USA, 2010; Volume 4. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Wilkens, P.W.; Porter, C.H.; Tsuji, G.Y. Decision Support System for Agrotechnology Transfer Version 4.5; DSSAT v4.5: ICASA Tools; University of Hawaii: Honolulu, HI, USA, 2010; Volume 3. [Google Scholar]
- Jones, C.A.; Kiniry, J.R. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Kiniry, J.R.; Williams, J.R.; Vanderlip, R.L.; Atwood, J.D.; Reicosky, D.C.; Mulliken, J.; Cox, W.J.; Mascagni, H.J., Jr.; Hollinger, S.E.; Wiebold, W.J. Evaluation of two maize models for nine U.S. locations. Agron. J. 1997, 89, 421–426. [Google Scholar] [CrossRef]
- Keating, B.A.; Wafula, B.M.; McCown, R.L. Simulation of plant density effects on maize yield as influenced by water nitrogen limitations. In Proceedings of the International Plant Physiology Conference, New Delhi, India, 15–20 February 1988; pp. 547–559. [Google Scholar]
- Ritchie, J.T.; Porter, C.H.; Suleiman, A.A.; Judge, J.; Jones, J.W. Extension of an existing model for soil water evaporation and redistribution under high water content conditions. Soil Sci. Soc. Am. J. 2009, 73, 792. [Google Scholar] [CrossRef]
- Valeriano, A.; Ines, M.; Droogers, P.; Makin, I.W.; Das Gupta, A.; Loof, R.; Clemente, R.S.; Kyoshi, H. Crop Growth and Soil Water Balance Modeling to Explore Water Management Option; International Water Management Institute: Colombo, Sri Lanka, 1993. [Google Scholar]
- Dalgliesh, N.; Hochman, Z.; Huth, N.; Holzworth, D. Field Protocol to APSoil characterizations. Version 4; CSIRO: Canberra, Australia, 2016. [Google Scholar]
- Mesfin, T.; Moeller, C.; Parsons, D.; Meinke, H. Maize (Zea mays, L.) productivity as influenced by sowing date and nitrogen fertiliser rate at Melkassa, Ethiopia: Parameterisation and evaluation of APSIM-Maize. In Proceedings of the Building Productive, Diverse and Sustainable Landscapes, Proceedings of 17th ASA Conference, Hobart, Australia, 20–24 September 2015; pp. 20–24. Available online: https://www.semanticscholar.org/paper/Maize-(-Zea-mays-L.)-productivity-as-influenced-by-Mesfin-Moeller/8f7fb30537061873615af59f9ce90514424ec832 (accessed on 23 September 2021).
- Wang, E.; Chen, C.; Yu, Q. Modeling the response of wheat and maize productivity to climate variability and irrigation in the North China Plain. In Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009; pp. 13–17. [Google Scholar]
- Ahmed, M. APSIM and DSSAT models as decision support tools. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 1174–1180. [Google Scholar]
- Dokoohaki, H.; Gheysari, M.; Mousavi, S.-F.; Hoogenboom, G. Effects of different irrigation regimes on soil moisture availability evaluated by CSM-CERES-Maize model under semi-arid condition. Ecohydrol. Hydrobiol. 2017, 17, 207–216. [Google Scholar] [CrossRef] [Green Version]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-4. 2016. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 27 July 2017).
- Harrison, S.R. Regression of a model on real-system output: An invalid test of model validity. Agric. Syst. 1990, 34, 183–190. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- MacCarthy, D.S.; Kihara, J.; Adiku, S.G.K. Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa. Nutr. Cycl. Agroecosyst. 2017, 110, 265–289. [Google Scholar]
- Zhang, Y.; Feng, L.; Wang, E.; Wang, J.; Li, B. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Can. J. Plant. Sci. 2012, 92, 937–949. [Google Scholar] [CrossRef] [Green Version]
- Jing, Q.; Shang, J.; Huffman, T.; Qian, B.; Pattey, E.; Liu, J.; Dong, T.; Drury, C.F. Using the CSM–CERES–Maize model to assess the gap between actual and potential yields of grain maize. J. Agric. Sci. 2017, 155, 239–260. [Google Scholar] [CrossRef]
- Chisanga, C.B. Interactive Effects of N Fertilization Rate, Cultivars and Planting Date under Climate Change on Maize (Zea mays L.) Yield Using Crop Simulation and Statistical Downscaling of Climate Models; University of Zambia: Lusaka, Zambia, 2019. [Google Scholar]
- Chisanga, C.B.; Phiri, E.; Chinene, V.R.N. Evaluation of sowing date and fertilization with nitrogen in maize cultivars in rainy conditions in Zambia. Afr. J. Plant Sci. 2019, 13, 221–230. [Google Scholar]
- Ahmad, M.; Khaliq, A.; Ahmad, R.; Ranjha, A.M. Allometery and productivity of autumn planted maize hybrids under narrow row spacing. Int. J. Agric. Biol. 2010, 12, 661–667. [Google Scholar]
- Jindo, K.; Schut, A.G.T.; Langeveld, J.W.A. Sustainable intensification in Western Kenya: Who will benefit? Agric. Syst. 2020, 182, 102831. [Google Scholar] [CrossRef]
- Gul, S.; Khan, M.H.; Khanday, B.A.; Nabi, S. Effect of Sowing Methods and NPK Levels on Growth and Yield of Rainfed Maize (Zea mays L.); Hindawi Publishing Corporation: London, UK, 2015; pp. 1–7. [Google Scholar]
- Adnan, A.A.; Jibrin, J.M.; Kamara, A.Y.; Abdulrahman, B.L.; Shaibu, A.S.; Garba, I.I. CERES-Maize model for determining the optimum planting dates of early maturing maize varieties in Northern Nigeria. Front. Plant Sci. 2017, 8, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, R.S.; Namvar, A. Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays, L.). Biologija 2016, 62, 35–45. [Google Scholar] [CrossRef]
- Zeidan, M.S.; Amany, A.; Bahr El-Kramany, M.F. Effect of N fertilizer and plant density on yield and quality of maize in sandy soil. Res. J. Agric. Biol. Sci. 2006, 2, 156–161. [Google Scholar]
- Arif, M.; Jan, M.T.; Khan, N.U.; Akbar, H.; Khan, S.A.; Khan, M.J.; Khan, A.; Munir, I.; Saeed, M.; Iqbal, A. Impact of plant populations and nitrogen levels on maize. Pak. J. Bot. 2010, 42, 3907–3913. [Google Scholar]
- Sangoi, L. Understanding plant density effects on maize growth and development: An important issue to maximize grain yield. Ciência Rural St. Maria 2001, 31, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Hadda, M.S. Phenology and thermal indices of maize (Zea mays L.) influenced by subsoil compaction and nitrogen fertilization under semi-arid irrigated conditions. J. Appl. Nat. Sci. 2014, 6, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Feleke, H.G.; Savage, M.J.; Tesfaye, K. Calibration and validation of APSIM-Maize, DSSAT CERES-Maize and AquaCrop models for Ethiopian tropical environments. S. Afr. J. Plant Soil. 2021, 38, 36–51. [Google Scholar] [CrossRef]
- Beah, A.; Kamara, A.Y.; Jibrin, J.M.; Akinseye, F.M.; Tofa, A.I.; Ademulegun, T.D. Simulation of the optimum planting windows for early and intermediate-maturing maize varieties in the Nigerian savannas using the APSIM model. Front. Sustain. Food Syst. 2021, 5, 624886. [Google Scholar] [CrossRef]
- Kisaka, O.M.; Mucheru-Muna, M.; Ngetich, F.K.; Mugwe, J.N.; Mugendi, D.N.; Mairura, F.; Muriuki, J. Using APSIM-model as a decision-support-tool for long-term integrated-nitrogen-management and maize productivity under semi-arid conditions in Kenya. Exp. Agric. 2016, 52, 279–299. [Google Scholar] [CrossRef]
- Groenendyk, D.; Kaleita, A.; Thorp, K. Assimilating in situ soil moisture measurements into the DSSAT-CSM using a Kalman filter. In Proceedings of the 2011 ASABE Annual International Meeting, Louisville, KY, USA, 7–10 August 2011; pp. 4319–4349. [Google Scholar]
- Nangia, V.; Ahmad M ud, D.; Jiantao, D.; Changrong, Y.; Hoogenboom, G.; Xurong, M.; Wenqing, H.; Shuang, L.; Qin, L. Modeling the field-scale effects of conservation agriculture on land and water productivity of rainfed maize in the Yellow River Basin, China. Int. J. Agric. Biol. Eng. 2010, 3, 5–17. [Google Scholar]
- Ollenburger, M.H. Modeling Integrated Soil Fertility Management Options in Malawi; Michigan State University: East Lansing, MI, USA, 2012. [Google Scholar]
- Tsimba, R.; Edmeades, G.O.; Millner, J.P.; Kemp, P.D. Optimising maize planting date and hybrid selection using simulation modeling. Agron. N. Z. 2013, 43, 55–62. [Google Scholar]
Depth (Cm) | 0–20 | 20–40 | 40–60 | 60–80 | 80–100 | Analysis Method |
---|---|---|---|---|---|---|
pH (water) | 7.30 | 7.20 | 7.50 | 7.70 | 7.60 | 1:5 soil water |
Total N (%) | 0.031 | 0.042 | 0.054 | 0.061 | 0.036 | Modified Kjeldahl method |
NO3N | 29.90 | 48.70 | 56.40 | 70.10 | 42.80 | |
NH4N | 18.00 | 29.20 | 33.90 | 42.10 | 25.70 | |
P extractable (mg kg−1) | 10.00 | 11.00 | 10.00 | 18.00 | 12.00 | Bray 1 |
K (mg kg1) | 1.05 | 0.99 | 1.12 | 0.59 | 0.89 | Ammonium acetate |
Ca (cmol(+) kg−1) | 11.00 | 9.30 | 3.40 | 2.90 | 3.20 | Ammonium acetate |
Mg (cmol(+) kg−1) | 3.50 | 2.70 | 2.30 | 1.00 | 1.30 | Ammonium acetate |
OC (%) | 0.35 | 0.57 | 0.66 | 0.82 | 0.50 | Walkley & Black method |
OM (%) | 0.602 | 0.980 | 1.135 | 1.410 | 0.860 | |
CEC (cmol(+) kg−1) | 15.57 | 13.02 | 6.85 | 4.52 | 5.42 | Ammonium acetate |
Bulk density (g cm−3) | 1.43 | 1.41 | 1.41 | 1.46 | 1.36 | SPAW |
Silt (%) | 12.80 | 16.80 | 12.80 | 18.80 | 2.80 | Hydrometer method |
Sand (%) | 39.60 | 35.60 | 37.60 | 41.60 | 37.60 | |
Clay (%) | 47.60 | 47.60 | 49.60 | 39.60 | 59.60 | |
Soil texture | clay | clay | clay | clay | clay | SPAW |
LL | 0.287 | 0.287 | 0.299 | 0.244 | 0.350 | SPAW |
DUL | 0.407 | 0.409 | 0.419 | 0.363 | 0.470 | |
SAT | 0.459 | 0.467 | 0.468 | 0.447 | 0.487 | |
SHC (mm h−1) | 0.350 | 0.500 | 0.290 | 1.480 | 0.010 |
Vegetative Stage | Reproductive Stage |
---|---|
Emergence (VE) | silking (R1) |
first leaf with collar (V1) | blister (R2) |
second leaf with full collar (V2) | milk (R3) |
third leaf with full collar (V3) | dough (R4) |
nth leaf with full collar (V(n)) | dent (R5) |
tasseling (VT) | maturity (R6) |
Treatment/Cultivar | Grain wt. (g m−2) | Grain No m−2 | Grain Unit wt. (g) | Stover wt. (g m−2) | Biomass wt. (g m−2) | Cob wt. (g m−2) |
---|---|---|---|---|---|---|
SD1 | 907.6 a | 2153 a | 42.35 a | 277.5 a | 1185.0 a | 158.0 a |
SD2 | 716.3 b | 2064 a | 34.27 b | 258.0 b | 974.3 b | 140.8 ab |
SD3 | 617.7 c | 2014 a | 31.86 b | 314.5 b | 932.2 b | 128.4 b |
Significance | *** | ns | *** | *** | *** | *** |
Tukey HSD 5% | 90.78 | 17.90 | 1.25 | 31.30 | 115.26 | 24.95 |
CV % | 18.52 | 57.8 | 4.6 | 16.84 | 17.05 | 5.1 |
ZMS 606 | 732.6 a | 2258 a | 33.62 b | 234.5 b | 967.1 a | 109.10 b |
P30B19 | 733.9 a | 2210 a | 34.52 b | 318.0 a | 1052.0 a | 157.8 a |
P30G50 | 775.2 a | 1763 b | 40.34 a | 297.4 a | 1073.0 a | 160.3 a |
Significance | ns | *** | *** | *** | ns | *** |
Tukey HSD 5% | 61.78 | 211.38 | 2.803.35 | 24.20 | 80.01 | 11.43 |
CV % | 15 | 15.52 | 14.12 | 15.5 | 14.1 | 3.3 |
Nitrogen (N) rate (N1) | 742.3 a | 2061 a | 36.70 a | 278.2 a | 1020.0 a | 137.37 a |
Nitrogen (N) rate (N2) | 729.2 a | 2054 a | 35.91 a | 272.6 a | 1002.0 a | 137.74 a |
Nitrogen (N) rate (N3) | 770.2 a | 2116 a | 35.87 a | 299.2 a | 1069.0 a | 152.07 a |
Significance | ns | ns | ns | ns | ns | ns |
Tukey HSD 5% | 90.79 | 13.74 | 3.43 | 31.88 | 124.6 | 16.18 |
CV % | 18.5 | 44.2 | 16 | 18.52 | 20.4 | 5.6 |
Interaction (SD ∗ V) significance | ns | ns | ** | ** | ns | ns |
Interaction (V ∗ N) significance | ns | ns | ns | ns | ns | ns |
Interaction (V ∗ SD ∗ N) significance | ns | ns | ns | ns | ns | ns |
Treatment/Cultivar | Husk wt. (g m−2) | Stem wt. (g m−2) | Leaf Blade wt. (g m−2) | HI | Cob Width (cm) | Cob Length (cm) |
---|---|---|---|---|---|---|
SD1 | 33.30 b | 47.77 b | 20.78 b | 0.77 a | 5.49 a | 21.43 a |
SD2 | 28.06 b | 47.59 b | 25.20 b | 0.73 b | 5.29 b | 21.3 a |
SD3 | 55.06 a | 68.17 a | 35.03 a | 0.66 c | 5.04 c | 18.43 b |
Significance | * | *** | *** | *** | *** | *** |
Tukey HSD 5% | 13.40 | 39.78 | 6.45 | 0.02 | 0.17 | 1.94 |
CV % | 45.70 | 12.62 | 31.60 | 4.64 | 5.10 | 11.41 |
ZMS 606 | 37.73 ab | 51.23 b | 19.89 b | 0.75 a | 5.17 b | 19.48 a |
P30B19 | 44.72 a | 62.15 a | 31.59 a | 0.69 c | 5.51 a | 20.78 a |
P30G50 | 33.97 b | 50.15 b | 29.53 a | 0.72 b | 5.14 b | 20.91 a |
Significance | * | ** | *** | *** | *** | ns* |
Tukey HSD 5% | 2.18 | 31.56 | 5.77 | 0.02 | 0.16 | 1.85 |
CV % | 32.00 | 13.72 | 36.00 | 3.8 | 3.30 | 7.8 |
Nitrogen (N) rate (N1) | 21.83 a | 54.88 a | 271.2 a | 0.72 a | 5.27 a | 20.33 a |
Nitrogen (N) rate (N2) | 19.53 a | 51.56 a | 279.1 a | 0.73 a | 5.24 a | 20.33 a |
Nitrogen (N) rate (N3) | 20.49 a | 57.08 a | 310.3 a | 0.72 a | 5.31 a | 20.51 a |
Significance | ns | ns | ns | ns | ns | ns |
Tukey HSD 5% | 2.34 | 37.93 | 54.34 | 0.02 | 0.10 | 0.94 |
CV % | 26.20 | 15.32 | 27.60 | 4.1 | 5.60 | 16.5 |
Interaction (SD ∗ V) significance | ns | ns | ns | ns | ns | *** |
Interaction (V∗ N) significance | ns | * | ns | ns | ns | ns |
Interaction (V ∗ SD ∗ N) significance | ns | ns | ns | ns | ns | ns |
Treatment/Cultivar | Grain wt.(g m−2) | Grains No. m−2 | 100-Grain wt.(g m−2) | Stover wt. (g m−2) | Biomass(g m−2) | Cob wt.(g m−2) | Husk wt.(g m−2) | Stem wt.(g m−2) | HI | Leaf Blade wt.(g m−2) |
---|---|---|---|---|---|---|---|---|---|---|
ZMS 606 | 717.16 a | 2798.67 a | 27.53 c | 266.62 a | 983.98 a | 117.21 | 38.39 | 47.68 | 0.72 a | 84.79 |
PHB 30B19 | 611.70 b | 2341.10 b | 29.33 b | 259.05 a | 870.75 | 122.49 | 30.16 | 43.00 a | 0.80 a | 80.84 |
PHB 30B50 | 662.00 b | 2254.94 b | 31.39 a | 272.39 a | 934.40 | 126.41 | 26.73 | 49.85 | 0.71 a | 91.54 |
Significance | ns | ns | ** | ns | ns | ns | * | ns | ns | ns |
LSD 5% | 104.39 | 341.36 | 1.72 | 42.191 | 127.79 | 17.28 | 10.82 | 12.77 | 0.04 | 23.53 |
CV % | 15.31 | 23.00 | 4.47 | 18.70 | 21.8 | 24.3 | 14.50 | 19.00 | 2.70 | 23.2 |
N rate | ||||||||||
N1 | 565.69 b | 2132.55 b | 29.04 a | 250.98 a | 816.67 | 105.06 | 37.55 | 44.00 | 0.69 a | 81.53 |
N2 | 711.47 a | 2562.81 a | 30.26 a | 274.09 a | 985.55 | 129.03 | 28.97 | 49.8 | 0.72 a | 89.75 |
N3 | 713.71 a | 2699.35 a | 28.96 a | 273.20 a | 986.91 | 132.03 a | 28.76 | 46.73 a | 0.72 a | 85.91 |
Significance | ** | ** | ns | ns | * | * | ns | ns | ns | ns |
LSD 5% | 104.39 | 341.36 | 1.72 | 42.19 | 127.79 | 17.73 | 10.82 | 12.97 | 0.04 | 23.53 |
CV % | 15.30 | 13.50 | 4.47 | 15.44 | 13.40 | 14.14 | 33.17 | 27.00 | 5.12 | 26.73 |
Interaction (V ∗ N) | ||||||||||
Significance | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-Stat | RMSE | ME | R2 | RMSEn | d-Stat | RMSE | ME | R2 |
ZMS 606 | 0.87 | 0.89 | 0.58 | −0.33 | 0.75 | 2.90 | 0.42 | 1.91 | −1.67 | 0.00 |
PHB 30G19 | 2.74 | 0.53 | 1.83 | −0.67 | 0.06 | 1.22 | 0.93 | 0.82 | −0.67 | 0.94 |
PHB 30B50 | 4.10 | 0.35 | 2.71 | −1.33 | 0.11 | 6.89 | 0.28 | 4.55 | −3.33 | 0.96 |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-Stat | RMSE | ME | R2 | RMSEn | d-Stat | RMSE | ME | R2 |
ZMS 606 | 3.30 | 0.63 | 4.12 | 3.00 | 0.25 | 2.32 | 0.73 | 2.89 | 2.33 | 0.82 |
PHB 30G19 | 2.77 | 0.65 | 3.46 | 2.00 | 0.18 | 3.61 | 0.71 | 4.51 | 3.67 | 0.60 |
PHB 30B50 | 1.73 | 0.86 | 2.16 | 0.67 | 0.84 | 1.46 | 0.91 | 1.83 | −0.67 | 0.96 |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-stat | RMSE | ME | R2 | RMSEn | d-stat | RMSE | ME | R2 |
ZMS 606 | 53.31 | 0.25 | 5.21 | 5.09 | 0.12 | 68.08 | 0.89 | 2.86 | 2.22 | 0.87 |
PHB 30G19 | 43.30 | 0.30 | 4.56 | 4.41 | 0.19 | 63.74 | 0.89 | 3.03 | 2.40 | 0.89 |
PHB 30B50 | 43.16 | 0.43 | 4.60 | 4.18 | 0.15 | 55.31 | 0.92 | 2.65 | 1.90 | 0.87 |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-stat | RMSE | ME | R2 | RMSEn | d-stat | RMSE | ME | R2 |
ZMS 606 | 17.41 | 0.66 | 1.28 | 1.03 | 0.60 | 9.16 | 0.91 | 0.67 | 0.13 | 0.84 |
PHB 30G19 | 17.34 | 0.66 | 1.27 | 1.00 | 0.58 | 9.27 | 0.93 | 0.68 | −0.04 | 0.76 |
PHB 30B50 | 20.13 | 0.44 | 1.56 | −0.13 | 0.62 | 14.31 | 0.91 | 1.11 | 0.08 | 0.69 |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-stat | RMSE | ME | R2 | RMSEn | d-stat | RMSE | ME | R2 |
ZMS 606 | 15.05 | 0.61 | 0.05 | 0.02 | 0.19 | 19.25 | 0.55 | 0.06 | −0.02 | 0.57 |
PHB 30G19 | 12.39 | 0.68 | 0.04 | 0.00 | 0.22 | 22.10 | 0.52 | 0.08 | −0.03 | 0.33 |
PHB 30B50 | 15.02 | 0.72 | 0.06 | 0.00 | 0.51 | 14.28 | 0.91 | 0.06 | −0.02 | 0.79 |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-stat | RMSE | ME | R2 | RMSEn | d-stat | RMSE | ME | R2 |
ZMS 606 | 10.21 | 0.42 | 230.55 | 82.89 | 0.00 | 14.66 | 0.35 | 330.92 | 176.89 | 0.00 |
PHB 30G19 | 12.81 | 0.37 | 283.20 | 188.56 | 0.00 | 16.41 | 0.30 | 362.67 | 194.00 | 0.00 |
PHB 30B50 | 17.52 | 0.22 | 308.84 | 135.44 | 0.32 | 24.84 | 0.30 | 437.91 | 304.78 | 0.31 |
APSIM-Maize | DSSAT-CERES-Maize | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | RMSEn | d-stat | RMSE | ME | R2 | RMSEn | d-stat | RMSE | ME | R2 |
ZMS 606 | 7.27 | 0.48 | 0.24 | −0.17 | 0.10 | 51.54 | 0.14 | 1.73 | −1.73 | 0.15 |
PHB 30G19 | 18.15 | 0.40 | 0.69 | −0.62 | 0.03 | 47.83 | 0.20 | 1.83 | −1.84 | 0.06 |
PHB 30B50 | 24.30 | 0.42 | 0.94 | −0.70 | 0.06 | 62.91 | 0.29 | 2.42 | −2.37 | 0.60 |
APSIM-Maize | DSSAT-CERES-Maize | |||
---|---|---|---|---|
Soil Layer (cm3 cm−3) | RMSEn | RMSE | RMSEn | RMSE |
soil layer 1 | 16.08 | 0.04 | 28.95 | 0.09 |
soil layer 2 | 8.37 | 0.03 | 19.53 | 0.07 |
soil layer 3 | 7.69 | 0.03 | 10.25 | 0.04 |
soil layer 4 | 7.34 | 0.03 | 9.79 | 0.04 |
soil layer 5 | 9.56 | 0.04 | 11.95 | 0.05 |
soil layer 6 | 11.74 | 0.05 | 11.74 | 0.05 |
soil layer 7 | 11.69 | 0.05 | 11.69 | 0.05 |
soil layer 8 | 14.12 | 0.06 | 21.18 | 0.09 |
Anthesis | Maturity | Grain Yield | Biomass Yield | Grain Size | Grain No m−2 | mLAI | |
---|---|---|---|---|---|---|---|
NRMSE | 16.00 | 12.77 | 20.18 | 73.98 | 6.25 | 18.51 | 16.75 |
RMSE | 16.69 | 19.54 | 1.34 | 6.87 | 0.02 | 456.21 | 0.57 |
MAE | 20.67 | 17.33 | 1.01 | 6.77 | 0.01 | 354.44 | 0.50 |
CRM | 0.20 | 0.11 | −0.11 | −0.73 | −0.04 | −0.09 | 0.01 |
Pearson | 0.63 | NA | −0.01 | 0.20 | 0.89 | 0.32 | −0.33 |
d-stat | 0.04 | NA | 0.48 | 0.23 | 0.75 | 0.59 | 0.11 |
Anthesis | Maturity | Grain Yield | Biomass Yield | Grain Size | Grain No m−2 | mLAI | |
---|---|---|---|---|---|---|---|
NRMSE | 19.94 | 11.34 | 45.08 | 71.64 | 21.14 | 26.91 | 49.56 |
RMSE | 20.80 | 17.36 | 2.99 | 6.65 | 0.06 | 663.29 | 1.67 |
MAE | 20.67 | 19.33 | 2.79 | 6.51 | 0.05 | 568.89 | 1.59 |
CRM | 0.20 | 0.13 | −0.42 | −0.70 | −0.18 | −0.22 | 0.47 |
Pearson | 0.63 | NA | 0.21 | 0.27 | 0.85 | 0.32 | 0.38 |
d-stat | 0.04 | NA | 0.35 | 0.24 | 0.55 | 0.52 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chisanga, C.B.; Phiri, E.; Chinene, V.R.N. Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars. Nitrogen 2021, 2, 392-414. https://doi.org/10.3390/nitrogen2040027
Chisanga CB, Phiri E, Chinene VRN. Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars. Nitrogen. 2021; 2(4):392-414. https://doi.org/10.3390/nitrogen2040027
Chicago/Turabian StyleChisanga, Charles B., Elijah Phiri, and Vernon R. N. Chinene. 2021. "Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars" Nitrogen 2, no. 4: 392-414. https://doi.org/10.3390/nitrogen2040027
APA StyleChisanga, C. B., Phiri, E., & Chinene, V. R. N. (2021). Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars. Nitrogen, 2(4), 392-414. https://doi.org/10.3390/nitrogen2040027