Advances in the Study of NO3− Immobilization by Microbes in Agricultural Soils
Abstract
:1. Introduction
2. Research Methods for Microbial NO3− Immobilization Rates
2.1. Soil Gross Microbial NO3− Immobilization Rates
2.2. NO3− Immobilization Rates by Fungi and Bacteria
3. Factors Influencing Microbial Immobilization of NO3−
3.1. Soil Microbes
3.2. Soil N Availability
3.3. Soil Organic C Availability
3.4. The Ratio of Soil C to N
3.5. Soil pH
3.6. Temperature
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandhu, N.; Sethi, M.; Kumar, A.; Dang, D.; Singh, J.; Chhuneja, P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. Front. Plant Sci. 2021, 12, 657629. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.T.; Zhang, F.S. Nitrate accumulation and its implication to environment in north China. Ecol. Environ. 2003, 1, 24–28. (In Chinese) [Google Scholar]
- Ou, X.L.; Chen, Z.B.; Hong, B.E.; Wang, H.Y.; Feng, L.J.; Liu, Y.C.; Zhu, M.Y.; Chen, Z.L. Transport and distribution of residual nitrogen in ion-adsorption rare earth tailings. Environ. Res. 2023, 237, 116975. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.N.; Hanan, E.J.; D’Odorico, P.; Tague, C.; Schimel, J.P.; Homyak, P.M. Dryland Watersheds in Flux: How Nitrogen Deposition and Changing Precipitation Regimes Shape Nitrogen Export. Earths Future 2024, 12, e2023EF004120. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Ju, X.T.; Christie, P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Res. 2011, 124, 450–458. [Google Scholar] [CrossRef]
- Zhang, B.W.; Zhou, M.H.; Zhu, B.; Xiao, Q.Y.; Zheng, X.H.; Zhang, J.B.; Müller, C.; Butterbach-Bahl, K. Soil clay minerals: An overlooked mediator of gross N transformations in Regosolic soils of subtropical montane landscapes. Soil Boil. Biochem. 2022, 168, 108612. [Google Scholar] [CrossRef]
- Dan, X.Q.; He, M.Q.; Meng, L.; He, X.X.; Wang, X.G.; Chen, S.D.; Cai, Z.C.; Zhang, J.B.; Zhu, B.; Müller, C. Strong rhizosphere priming effects on N dynamics in soils with higher soil N supply capacity: The ‘Matthew effect’ in plant-soil systems. Soil Biol. Biochem. 2023, 178, 108949. [Google Scholar] [CrossRef]
- Armijo, R.; Coulson, A.H. Epidemiology of stomach cancer in Chile—The role of nitrogen fertilizers. Int. J. Epidemiol. 1975, 4, 301–309. [Google Scholar] [CrossRef]
- Haenszel, W.; Kurihara, M.; Locke, F.B.; Shimuzu, K.; Segi, M. Stomach cancer in Japan. JNCI J. Natl. Cancer Inst. 1976, 56, 265–274. [Google Scholar] [CrossRef]
- Zhang, W.S.; Liang, Z.Y.; He, X.M.; Wang, X.Z.; Shi, X.J.; Zou, C.Q.; Chen, X.P. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef]
- Sun, M.X.; Li, J.; Zhang, L.L.; Su, X.M.; Liu, N.; Han, X.R.; Wu, S.J.; Sun, Z.T.; Yang, X.D. Effects of Controlled Release Nitrogen Fertilizer on Yield and Soil Nutrient Regime of Wheat-Corn Rotation System. Pedosphere 2024, 34, 222–235. [Google Scholar] [CrossRef]
- Qiao, C.L.; Liu, L.L.; Hu, S.J.; Compton, J.E.; Greaver, T.L.; Li, Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Change Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Aliyu, G.; Luo, J.F.; Di, H.J.; Liu, D.Y.; Yuan, J.J.; Chen, Z.M.; He, T.H.; Ding, W.X. Yield-scaled nitrous oxide emissions from nitrogen-fertilized croplands in China: A meta-analysis of contrasting mitigation scenarios. Pedosphere 2021, 31, 231–242. [Google Scholar] [CrossRef]
- Zhang, B.W.; Zhou, M.H.; Zhu, B.; Xiao, Q.Y.; Wang, T.; Tang, J.L.; Yao, Z.S.; Kiese, R.; Butterbach-Bahl, K.; Brüggemann, N. Soil type affects not only magnitude but also thermal sensitivity of N2O emissions in subtropical mountain area. Sci. Total Environ. 2021, 797, 149127. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, M.H.; Zhu, B.; Brüggemann, N.; Zhang, W.; Butterbach-Bahl, K. Land use types affect soil microbial NO3- immobilization through changed fungal and bacterial contribution in alkaline soils of a subtropical montane agricultural landscape. Biol. Fert. Soils 2024, 60, 237–252. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Matson, P.A. Mechanisms of nitrogen-retention in forest ecosystems—A field experiment. Science 1984, 225, 51–52. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.; Cao, M.M.; Chen, Z.X.; Tu, X.S.; Elrys, A.S.; Jing, H.; Wang, X.Z.; Cai, Z.C.; Müller, C.; et al. Awakening soil microbial utilization of nitrate by carbon regulation to lower nitrogen pollution. Agr. Ecosyst. Environ. 2024, 362, 108848. [Google Scholar] [CrossRef]
- Zhu, J.; Jansen-Willems, A.; Müller, C.; Dörsch, P. Topographic differences in nitrogen cycling mediate nitrogen retention in a subtropical, N-saturated forest catchment. Soil Biol. Biochem. 2021, 159, 108303. [Google Scholar] [CrossRef]
- Elrys, A.S.; Elnahal, A.S.; Abdo, A.I.; Desoky, E.S.M.; Selem, E.; Rady, M.M. Traditional, Modern, and Molecular Strategies for Improving the Efficiency of Nitrogen Use in Crops for Sustainable Agriculture: A Fresh Look at an Old Issue. J. Soil Sci. Plant Nut. 2022, 22, 3130–3156. [Google Scholar] [CrossRef]
- Stark, J.M.; Hart, S.C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 1997, 385, 61–64. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhu, T.B.; Meng, T.Z.; Zhang, Y.C.; Jiajia, Y.J.; Yang, W.Y.; Müller, C.; Cai, Z.C. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China. Soil Biol. Biochem. 2013, 62, 107–114. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.C.; Bai, E.; Cui, Y.H.; He, H.B.; Zhang, X.D. The strategy of microbial utilization of the deposited N in a temperate forest soil. Biol. Fert. Soils 2020, 56, 359–367. [Google Scholar] [CrossRef]
- Ren, G.C.; Zhang, X.F.; Zhang, J.B.; Mu, L.; Xin, X.L.; Yun, Y.M.; Zhu, A.N.; Ge, S.C. Effects of straw management and N levels on gross nitrogen transformations in fluvo-aquic soil of the North China Plain. Sci. Total Environ. 2024, 944, 173652. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Huang, R.; Yu, Y.F.; Wang, S.Q. Role of microbial assimilation of soil NO3- in reducing soil NO3- concentration. Acta Pedol. Sinca 2017, 54, 1326–1331. (In Chinese) [Google Scholar]
- Jansson, S.L.; Hallam, M.J.; Bartholomew, W.V. Preferential utilization of ammonium over nitrate by micro-organisms in the decomposition of oat straw. Plant Soil 1955, 6, 382–390. [Google Scholar] [CrossRef]
- Dou, P.T.; Cheng, Q.; Liang, N.; Bao, C.Y.; Zhang, Z.M.; Chen, L.N.; Yang, H.Q. Rhizosphere Microbe Affects Soil Available Nitrogen and Its Implication for the Ecological Adaptability and Rapid Growth of Dendrocalamus sinicus, the Strongest Bamboo in the World. Int. J. Mol. Sci. 2023, 24, 14665. [Google Scholar] [CrossRef]
- Recous, S.; Mary, B.; Faurie, G. Microbial immobilization o ammonium and nitrate in cultivated soils. Soil Bio. Biochem. 1990, 22, 913–922. [Google Scholar] [CrossRef]
- Sharma, N.; Kumar, S. Gross rates of nitrogen transformation in soils of a global biodiversity hotspot (Western Ghats, India). J. Plant Nut. Soil Sci. 2020, 183, 579–591. [Google Scholar] [CrossRef]
- Wang, J.; Sun, N.; Xu, M.G.; Wang, S.Q.; Zhang, J.B.; Cai, Z.C.; Cheng, Y. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil. Geoderma 2019, 337, 710–717. [Google Scholar] [CrossRef]
- Li, X.B.; He, H.B.; Zhang, X.D.; Yan, X.Y.; Six, J.; Cai, Z.C.; Barthel, M.; Zhang, J.B.; Necpalova, M.; Ma, Q.Q.; et al. Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture. Soil Biol. Biochem. 2019, 134, 81–89. [Google Scholar] [CrossRef]
- Kirkham, D.; Bartholomew, W.V. Equations for Following Nutrient Transformations in Soil, Utilizing Tracer Data, II.1. Soil Sci. Soc. Am. J. 1954, 18, 33–34. [Google Scholar] [CrossRef]
- Murphy, D.V.; Reous, S.; Stockdale, E.A.; Fillery, I.R.P.; Jensen, L.S.; Hatch, D.J.; Goulding, K.W.T. Gross nitrogen fluxes in soil, theory, measurement and application of 15N pool dilution techniques. Adv. Agron. 2003, 79, 69–118. [Google Scholar]
- Zogg, G.P.; Zak, D.R.; Pregitzer, K.S.; Burton, A.J. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology 2000, 81, 1858–1866. [Google Scholar] [CrossRef]
- Mary, B.; Recous, S.; Darwis, D.; Robin, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 1996, 181, 71–82. [Google Scholar] [CrossRef]
- Romero, C.M.; Engel, R.; Chen, C.C.; Wallander, R. Microbial Immobilization of Nitrogen-15 Labelled Ammonium and Nitrate in an Agricultural Soil. Soil Sci. Soc. Am. J. 2015, 79, 595–602. [Google Scholar] [CrossRef]
- Chen, Z.X.; Zhang, H.M.; Tu, X.S.; Sun, X.; Wang, J.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Chang, S.X. Characteristics of organic material inputs affect soil microbial NO3- immobilization rates calculated using different methods. Eur. J. Soil Sci. 2020, 72, 480–486. [Google Scholar] [CrossRef]
- Li, X.B.; Li, Z.A.; Zhang, X.D.; Xia, L.L.; Zhang, W.X.; Ma, Q.Q.; He, H.B. Disentangling immobilization of nitrate by fungi and bacteria in soil to plant residue amendment. Geoderma 2020, 374, 114450. [Google Scholar] [CrossRef]
- Myrold, D.D.; Posavatz, N.R. Potential importance of bacteria and fungi in nitrate assimilation in soil. Soil Biol. Biochem. 2007, 39, 1737–1743. [Google Scholar] [CrossRef]
- Waring, B.G.; Averill, C.; Hawkes, C.V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling, insights from meta-analysis and theoretical models. Ecol. Lett. 2013, 16, 887–894. [Google Scholar] [CrossRef]
- Boyle, S.A.; Yarwood, R.R.; Bottomley, J.; Myrold, D.D. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biol. Biochem. 2008, 40, 443–451. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can. J. Microbiol. 1975, 21, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Bottomley, P.J.; Taylor, A.E.; Myrold, D.D. A consideration of the relative contributions of different microbial subpopulations to the soil N cycle. Front. Microbiol. 2012, 3, 373. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; He, H.B.; Zhang, X.D.; Kazanci, C.; Li, Z.A.; Necpalova, M.; Ma, Q.Q. Calculation of fungal and bacterial inorganic nitrogen immobilization rates in soil. Soil Biol. Biochem. 2021, 153, 108114. [Google Scholar] [CrossRef]
- Liu, R.; Han, C.; Kang, Y.; Jiang, Y.B.; Deng, H.; Liu, K.L.; Zhang, J.B.; Zhong, W.H. Active microbial taxa preferentially assimilate inorganic nitrogen in acidic upland soils using a 15N-DNA-SIP approach. Soil Biol. Biochem. 2024, 188, 109226. [Google Scholar] [CrossRef]
- Li, H.; Su, J.Q.; Yang, X.R.; Zhu, Y.G. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci. Total Environ. 2019, 649, 422–430. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol. 2011, 78, 17–30. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol. Ecol. 2011, 76, 89–99. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Burger, M.; Jackson, L.E. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol. Biochem. 2003, 35, 29–36. [Google Scholar] [CrossRef]
- Hogberg, M.N.; Hogberg, P.; Myrold, D.D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 2007, 150, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Lignin degradation by microorganisms: A review. Biotechnol. Progr. 2022, 38, e3226. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.P.; Ji, D.D.; Dong, W.F.; Yuan, L.; Zhang, F.S.; Li, Y.; Zang, L.H. The Synergistic Action of Electro-Fenton and White-Rot Fungi in the Degradation of Lignin. Front. Bioeng. Biotechnol. 2020, 8, 99. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol. Ecol. 2007, 62, 258–267. [Google Scholar] [CrossRef]
- Yannikos, N.; Leinweber, P.; Helgason, B.L.; Baum, C.; Walley, F.L.; Van Rees, K.C.J. Impact of Populus trees on the composition of organic matter and the soil microbial community in Orthic Gray Luvisols in Saskatchewan (Canada). Soil Biol. Biochem. 2014, 70, 5–11. [Google Scholar] [CrossRef]
- Helgason, T.; Daniell, T.J.; Husband, R.; Fitter, A.H.; Young, J.P.W. Ploughing up the wood-wide web? Nature 1998, 394, 431. [Google Scholar] [CrossRef]
- Yin, Y.L.; Yuan, Y.; Zhang, X.W.; Huhe; Cheng, Y.X.; Borjigin, S. Comparison of the Responses of Soil Fungal Community to Straw, Inorganic Fertilizer, and Compost in a Farmland in the Loess Plateau. Microbiol. Spectr. 2022, 10, e0223021. [Google Scholar] [CrossRef]
- Strickland, M.S.; Rousk, J. Considering fungal, bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microb. 2009, 75, 1589–1596. [Google Scholar] [CrossRef]
- Blagodatskaya, E.V.; Anderson, T.H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils. Soil Biol. Biochem. 1998, 30, 1269–1274. [Google Scholar] [CrossRef]
- Gao, W.T.; Zhu, X.M.; Zhang, P.P.; Wang, Q.T.; Zhang, X.J.; Yin, H.J. Response of decomposition dynamics of ectomycorrhizal fungal fruit bodies to N addition depends on decomposition stage in a coniferous forest. Appl. Soil Ecol. 2024, 193, 105125. [Google Scholar] [CrossRef]
- Daebeler, A.; Bodelier, P.L.E.; Hefting, M.M.; Rütting, T.; Jia, Z.J.; Laanbroek, H.J. Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biol. Biochem. 2017, 107, 114–124. [Google Scholar] [CrossRef]
- DeForest, J.L.; Zak, D.R.; Pregitzer, K.S.; Burton, A.J. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci. Soc. Am. J. 2004, 68, 132–138. [Google Scholar] [CrossRef]
- Corre, M.D.; Brumme, R.; Veldkamp, E.; Beese, F.O. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob. Change Biol. 2007, 13, 1509–1527. [Google Scholar] [CrossRef]
- Shibata, M.; Sangsompaisarn, N.; Watanabe, S.; Funakawa, S. Gross nitrogen transformation rates in shifting cultivation systems in northern Thailand: Controlling factors and implications for inorganic nitrogen availability. Geoderma Reg. 2023, 34, e00692. [Google Scholar] [CrossRef]
- Betlach, M.R.; Tiedje, J.M.; Firestone, R.B. Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13. Arch. Microbiol. 1981, 129, 135–140. [Google Scholar] [CrossRef]
- Rice, C.W.; Tiedje, J.M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol. Biochem. 1989, 21, 597–602. [Google Scholar] [CrossRef]
- Vantriet, J.; Stoutham, A.H.; Planta, R.J. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J. Bacteriol. 1968, 96, 1455–1464. [Google Scholar] [CrossRef]
- Sias, S.R.; Ingraham, J.L. Isolation and analysis of mutants of Pseudomnas-aeruginosa unable to assimilate nitrate. Arch. Microbiol. 1979, 122, 263–270. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.X.; Xu, C.; Elrys, A.S.; Shen, F.; Cheng, Y.; Chang, S.X. Organic amendment enhanced microbial nitrate immobilization with negligible denitrification nitrogen loss in an upland soil. Environ. Pollut. 2021, 288, 117721. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, M.; Yin, M.; Chu, G.; Xu, C.; Zhang, X.; Abliz, B.; Tang, C.; Wang, D.; Chen, S. Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil. Soil Till. Res. 2022, 215, 105219. [Google Scholar] [CrossRef]
- Zhang, J.B.; Cai, Z.C.; Zhu, T.B.; Yang, W.Y.; Müller, C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci. Rep. 2013, 3, 2342. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, J.; Wang, J.Y.; Chang, S.X.; Wang, S.Q. The quality and quantity of exogenous organic carbon input control microbial NO3- immobilization: A meta-analysis. Soil Biol. Biochem. 2017, 115, 357–363. [Google Scholar] [CrossRef]
- Chen, Z.; YU, G.R. Advances in the soil microbial carbon use efficiency. Acta Ecol. Sin. 2020, 40, 756–767. (In Chinese) [Google Scholar]
- Cao, Y.S.; He, Z.L.; Zhu, T.B.; Zhao, F.L. Organic-C quality as a key driver of microbial nitrogen immobilization in soil: A meta-analysis. Geoderma 2021, 383, 114784. [Google Scholar] [CrossRef]
- Cao, Y.S.; Zhao, F.L.; Zhang, Z.Y.; Zhu, T.B.; Xiao, H.Y. Biotic and abiotic nitrogen immobilization in soil incorporated with crop residue. Soil Till. Res. 2020, 202, 104664. [Google Scholar]
- Chen, Z.X.; Elrys, A.S.; Zhang, H.M.; Tu, X.S.; Wang, J.; Cheng, Y.; Zhang, J.B.; Cai, Z.C. How does organic amendment affect soil microbial nitrate immobilization rate? Soil Biol. Biochem. 2022, 173, 108784. [Google Scholar] [CrossRef]
- Jing, H.; Wang, G.L. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China. For. Ecol. Manag. 2020, 476, 118465. [Google Scholar] [CrossRef]
- Romani, A.M.; Fischer, H.; Mille-Lindblom, C.; Tranvik, L.J. Interactions of bacteria and fungi on decomposing litter, Differential extracellular enzyme activities. Ecology 2006, 87, 2559–2569. [Google Scholar] [CrossRef]
- Bonanomi, G.; Lorito, M.; Vinale, F.; Woo, S.L. Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.G.; Townsend, A.R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature 2010, 464, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Zhang, H.M.; Tu, X.S.; Wang, J.; Elrys, A.S.; Tang, Q.; Zhang, J.B.; Cai, Z.C.; Cheng, Y. C/N ratio of high-organic C materials is a poor predictor of microbial nitrate immobilization potential in a nitrate-rich soil: An 15N incubation study. Soil Till. Res. 2024, 238, 106019. [Google Scholar] [CrossRef]
- Elrys, A.S.; Chen, Z.X.; Wang, J.; Uwiragiye, Y.; Helmy, A.M.; Desoky, E.M.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Müller, C. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Glob. Change Biol. 2022, 28, 4472–4488. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rey, M.X.; González-Prieto, S.J. Soil gross N transformation rates after a wildfire and straw mulch application for burned soil emergency stabilisation. Biol. Fert. Soils 2015, 51, 493–505. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.L.; Contosta, A.R.; Cusack, D.F.; Frey, S.D.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhang, H.C.; Wang, D.Z.; Guo, X.S.; Yang, T.; Xiang, X.J.; Walder, F.; Chu, H.Y. Differential Responses of Arbuscular Mycorrhizal Fungal Communities to Long-Term Fertilization in the Wheat Rhizosphere and Root Endosphere. Appl. Environ. Microbiol. 2021, 87, e0034921. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Zhang, J.B.; Müller, C.; Cai, Z.C. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 2015, 91, 222–231. [Google Scholar] [CrossRef]
- Yadvinder, S.; Bijay, S.; Timsina, J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Zhang, J.B.; Cai, Z.C.; Müller, C. Terrestrial N cycling associated with climate and plant-specific N preferences: A review. Eur. J. Soil Sci. 2018, 69, 488–501. [Google Scholar] [CrossRef]
- Zhang, M.M.; Alves, R.J.E.; Zhang, D.D.; Han, L.L.; He, J.Z.; Zhang, L.M. Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biol. Biochem. 2017, 112, 77–89. [Google Scholar] [CrossRef]
- Elrys, A.S.; Wang, J.; Metwally, M.A.S.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Chang, S.X.; Müller, C. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Glob. Change Biol. 2021, 27, 6512–6524. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.N.; Lü, X.T.; Liu, Y.; Guo, J.X.; Zhang, N.Y.; Yang, J.Q.; Wang, R.Z. The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China. PLoS ONE. 2011, 6, e27645. [Google Scholar] [CrossRef] [PubMed]
- Crognale, S.; Venturi, S.; Tassi, F.; Rossetti, S.; Cabassi, J.; Capecchiacci, F.; Bicocchi, G.; Vaselli, O.; Morrison, H.G.; Sogin, M.L.; et al. Geochemical and microbiological profiles in hydrothermal extreme acidic environments (Pisciarelli Spring, Campi Flegrei, Italy). FEMS Microbiol. Ecol. 2022, 98, fiac088. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.M.; Yu, M.J.; Chen, H.H.; Zhao, H.C.; Huang, Y.L.; Su, W.Q.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Change Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef]
Method | Principle | Calculation | Advantages/Disadvantages | References | |
---|---|---|---|---|---|
Formula | Explanation | ||||
15N Pool Dilution Method | After labeling the NO3− pool with 15N, as other unlabeled N forms are converted into the labeled 15N form, the ¹⁵N abundance in this N pool decreases. The gross microbial NO3− immobilization rate is then determined by analyzing the temporal changes in NO3− concentration and atomic percentage excess. | ; INO3 = | where Fi is the gross nitrification rate; i is the ith measurement; Q and A are the amount and 15N atom% excess of NO3−, respectively. | Advantages: Simple experimental procedure and calculation method. Disadvantages: Be overestimated due to the lack of consideration for denitrification and DNRA. | [21,32,33] |
Microbial Biomass 15N Recovery Method | After the NO3− pool is labeled with 15N, the ¹⁵N concentration in microbial biomass increases as the labeled NO3− is immobilized by microorganisms. | INO3 = | where Nfum and Nnfum are the measured N amount in digested fumigated and non-fumigated samples, respectively; Aefum and Aenfum are 15N atom% excess in extracts of fumigated and non-fumigated samples, respectively; AeNO3 is average 15N atom% excess of soil NO3− at the beginning and end of the incubation. | Advantages: Theoretically, this approach provides the most accurate results. Disadvantages: The experimental procedure is complex, making it challenging to obtain precise results. | [34,35] |
Soil Organic 15N Recovery Method | After labeling the NO3− pool with 15N, the 15N concentration in soil organic N increases as the labeled NO3− is immobilized by microorganisms. | Org 15Ni = Org Ni × AeOrgaNi; INO3 | where Org 15Ni is the amount of 15N in the KCl-extracted residue soil, d is the number of days of incubation, Org Ni is the measured amount of N in the washed soil residue, AeOrgaNi is the 15N atom% excess in the washed soil residue, and Aei is the 15N atom% excess of NO3−. | Advantages: Simple experimental procedure with minimal errors. Disadvantages: The incubation period should not be prolonged to avoid re-mineralization, which could increase the error. | [36,37] |
Method | Principle | Calculation | Advantages/Disadvantages | References | |
---|---|---|---|---|---|
Formula | Explanation | ||||
Microbial Selective Inhibition | Through the manipulation of adverse culture conditions or the addition of specific agents, the growth of non-target microorganisms in the sample can be suppressed, thereby promoting the preferential growth of target microorganisms. | Advantages: It enables the quantification of NO3− immobilization rates for fungal or bacterial communities. Disadvantages: The low specificity of selective inhibitors and the difficulty in controlling their dosage may compromise the accuracy and reliability of the outcomes. | [39,41] | ||
15N-AS-SIP | Soil amino sugars, serving as markers of microbial residues, are characterized by their stability and origin specificity. Glucosamine primarily originates from fungi, while muramic acid is exclusively derived from bacteria. Based on this, the synthesis rate of 15N-labeled amino sugars specific to fungi and bacteria during short-term incubation can be used to indicate the NO3− immobilization rates of these microorganisms. | APE = (Re − Rc)/[1 + (Re − Rc)] × 100; CL = CT × APE/100 | where Re is the isotope ratio of the incubated samples, Re = [A(F + 1)/A(F)]; Rc is the corresponding ratio obtained from the original soil; CL is the content of the 15N-labeled portion of GluN and MurN; CT is the concentration of each amino sugar. | Advantages: It allows for the quantification of NO3− immobilization rates by fungal or bacterial communities. Disadvantages: It neglects the potential contribution of other microbial groups, like archaea, to NO3− immobilization, resulting in potential inaccuracies in the findings. | [16,38,44,46] |
15N-DNA-SIP | By employing 15N stable isotopes to trace the microorganisms participating in NO3− immobilization, the immobilization process is directly linked to specific microbial species, thereby identifying the specific functional microorganisms that are directly involved in soil NO3− immobilization. | Advantages: It enables the direct identification of specific microbial species that participate in NO3− immobilization. Disadvantages: It is unable to provide a quantitative measurement of the NO3− immobilization rate. | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Song, L. Advances in the Study of NO3− Immobilization by Microbes in Agricultural Soils. Nitrogen 2024, 5, 927-940. https://doi.org/10.3390/nitrogen5040060
Wang X, Song L. Advances in the Study of NO3− Immobilization by Microbes in Agricultural Soils. Nitrogen. 2024; 5(4):927-940. https://doi.org/10.3390/nitrogen5040060
Chicago/Turabian StyleWang, Xingling, and Ling Song. 2024. "Advances in the Study of NO3− Immobilization by Microbes in Agricultural Soils" Nitrogen 5, no. 4: 927-940. https://doi.org/10.3390/nitrogen5040060
APA StyleWang, X., & Song, L. (2024). Advances in the Study of NO3− Immobilization by Microbes in Agricultural Soils. Nitrogen, 5(4), 927-940. https://doi.org/10.3390/nitrogen5040060