A Performance Evaluation of Nine Potential Evapotranspiration Methods Against the FAO-56 Penman–Monteith Benchmark at the Broadleaf Forest of Taxiarchis in Northern Greece †
Abstract
:1. Introduction
2. Study Site, Data, and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PET | Potential evapotranspiration |
FAO | Food and Agriculture Organization |
MBE | Mean bias error |
MAE | Mean absolute error |
RMSE | Root-mean-square error |
sRPI | Standardized ranking performance index |
References
- Alexandris, S.; Proutsos, N. How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates? Agric. Water Manag. 2020, 237, 106181. [Google Scholar] [CrossRef]
- Alexandris, S.; Stricevic, R.; Petkovic, S. Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula. Eur. Water 2008, 21, 17–28. [Google Scholar]
- Bourletsikas, A.; Argyrokastritis, I.; Proutsos, N. Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest. Hydrol. Res. 2018, 49, 1028–1041. [Google Scholar] [CrossRef]
- Gebhart, S.; Radoglou, K.; Chalivopoulos, G.; Matzarakis, A. Evaluation of potential evapotranspiration in central Macedonia by EmPEst. In Advances in Meteorology, Climatology and Atmospheric Physics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 451–456. [Google Scholar]
- Proutsos, N.; Tigkas, D.; Tsevreni, I.; Alexandris, S.G.; Solomou, A.D.; Bourletsikas, A.; Stefanidis, S.; Nwokolo, S.C. A Thorough Evaluation of 127 Potential Evapotranspiration Models in Two Mediterranean Urban Green Sites. Remote Sens. 2023, 15, 3680. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300; p. D05109. [Google Scholar]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Trajkovic, S.; Kolakovic, S. Evaluation of reference evapotranspiration equations under humid conditions. Water Resour. Manag. 2009, 23, 3057–3067. [Google Scholar] [CrossRef]
- Althoff, D.; Santos, R.A.D.; Bazame, H.C.; Cunha, F.F.D.; Filgueiras, R. Improvement of Hargreaves–Samani reference evapotranspiration estimates with local calibration. Water 2019, 11, 2272. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V. Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought severity and trends in a Mediterranean oak forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Proutsos, N.; Liakatas, A.; Alexandris, S. Ratio of photosynthetically active to total incoming radiation above a Mediterranean deciduous oak forest. Theor. Appl. Climatol. 2019, 137, 2927–2939. [Google Scholar] [CrossRef]
- Proutsos, N.D.; Liakatas, A.; Alexandris, S.G.; Tsiros, I.X.; Tigkas, D.; Halivopoulos, G. Atmospheric factors affecting global solar and Photosynthetically Active Radiation relationship in a Mediterranean forest site. Atmosphere 2022, 13, 1207. [Google Scholar] [CrossRef]
- Dalton, J. Experimental essays, on the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on the expansion of elastic fluids by heat. In Memoirs of the Literary and Philosophical Society of Manchester; The Society: Manchester, UK, 1801; Volume 5, pp. 535–602. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Szász, G. A potenciális párolgás meghatározásának új módszere. Hidrológiai Közlöny 1973, 10, 435–442. [Google Scholar]
- Pereira, A.R.; Pruitt, W.O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric. Water Manag. 2004, 66, 251–257. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Makkink, G. Examination of Penman’s revised formula, [Esperanto]. Neth. J. Agri. Sci. 1957, 5, 290–305. [Google Scholar] [CrossRef]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron 1961, 12, 13–49. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Lekakis, E.; Tziachris, P.; Doulgeris, C.; Papadopoulos, F.; Papadopoulos, A.; Papamichail, D. A ranking system for comparing models’ performance combining multiple statistical criteria and scenarios: The case of reference evapotranspiration models, Environ. Model. Softw. 2019, 114, 98–111. [Google Scholar] [CrossRef]
PET Method/Category | Equation * | Eq. No. | References |
---|---|---|---|
Benchmark model | |||
FAO56-PM | (1) | [6] | |
Mass-transfer models | |||
Dalton, 1801 | (2) | [15] | |
Penman, 1948 | (3) | [16] | |
Szász, 1973 | (4) | [17] | |
Temperature-based models | |||
Thornthwaite, 1948 | (5) | [18,19] | |
Hargreaves and Samani, 1985 | (6) | [20] | |
Droogers and Allen, 2002 | (7) | [21] | |
Radiation-based models | |||
Makkink, 1957 | (8) | [22] | |
Turc, 1961 | (9) | [23] | |
Priestley and Taylor, 1972 | (10) | [24] |
PET Category/Method | N | Mean | a | b | MBE | RMSE | MAE | sd2 | d | R2 | sRPI |
---|---|---|---|---|---|---|---|---|---|---|---|
Benchmark method | |||||||||||
FAO56-PM | 2289 | 2.308 | |||||||||
Mass-transfer methods | |||||||||||
Dalton, 1801 | 2098 | 3.105 | 1.26 | −0.01 | 0.63 | 1.50 | 0.98 | 1.85 | 0.85 | 0.68 | 0.126 |
Penman, 1948 | 2098 | 2.706 | 1.15 | −0.14 | 0.23 | 1.31 | 0.89 | 1.67 | 0.91 | 0.65 | 0.411 |
Szász, 1973 | 2081 | 2.854 | 1.13 | 0.04 | 0.36 | 1.26 | 0.94 | 1.46 | 0.89 | 0.67 | 0.374 |
Temperature-based methods | |||||||||||
Thornthwaite, 1948 | 2289 | 2.099 | 0.90 | 0.02 | −0.21 | 0.82 | 0.63 | 0.63 | 0.95 | 0.76 | 0.662 |
Hargreaves and Samani, 1985 | 2289 | 2.696 | 0.93 | 0.54 | 0.39 | 0.77 | 0.60 | 0.44 | 0.92 | 0.83 | 0.542 |
Droogers and Allen, 2002 | 2277 | 2.489 | 0.96 | 0.26 | 0.17 | 0.74 | 0.55 | 0.52 | 0.96 | 0.81 | 0.730 |
Radiation-based methods | |||||||||||
Makkink, 1957 | 2268 | 2.120 | 0.91 | 0.01 | −0.21 | 0.49 | 0.37 | 0.19 | 0.97 | 0.92 | 0.934 |
Turc, 1961 | 2289 | 2.482 | 1.09 | −0.03 | 0.17 | 0.58 | 0.43 | 0.31 | 0.97 | 0.91 | 0.879 |
Priestley and Taylor, 1972 | 2289 | 2.553 | 1.10 | 0.01 | 0.24 | 0.56 | 0.44 | 0.25 | 0.98 | 0.93 | 0.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proutsos, N.D.; Stefanidis, S.P.; Stefanidis, P.S. A Performance Evaluation of Nine Potential Evapotranspiration Methods Against the FAO-56 Penman–Monteith Benchmark at the Broadleaf Forest of Taxiarchis in Northern Greece. Proceedings 2025, 117, 14. https://doi.org/10.3390/proceedings2025117014
Proutsos ND, Stefanidis SP, Stefanidis PS. A Performance Evaluation of Nine Potential Evapotranspiration Methods Against the FAO-56 Penman–Monteith Benchmark at the Broadleaf Forest of Taxiarchis in Northern Greece. Proceedings. 2025; 117(1):14. https://doi.org/10.3390/proceedings2025117014
Chicago/Turabian StyleProutsos, Nikolaos D., Stefanos P. Stefanidis, and Panagiotis S. Stefanidis. 2025. "A Performance Evaluation of Nine Potential Evapotranspiration Methods Against the FAO-56 Penman–Monteith Benchmark at the Broadleaf Forest of Taxiarchis in Northern Greece" Proceedings 117, no. 1: 14. https://doi.org/10.3390/proceedings2025117014
APA StyleProutsos, N. D., Stefanidis, S. P., & Stefanidis, P. S. (2025). A Performance Evaluation of Nine Potential Evapotranspiration Methods Against the FAO-56 Penman–Monteith Benchmark at the Broadleaf Forest of Taxiarchis in Northern Greece. Proceedings, 117(1), 14. https://doi.org/10.3390/proceedings2025117014