A Derivative Free Non-Linear Programming Method for the Optimal Setting of PATs to Be Used in a Hybrid Genetic Algorithm: A Preliminary Work †
Abstract
:1. Introduction
2. Methods
2.1. The External Hydraulic Solver
2.2. The Powell Direction Set method
- initialize a set of directions (where is the unitary vector basis of the n dimensional space) and select a starting point ;
- for move to a minimum along the direction and set ;
- for set ;
- set ;
- move to the minimum along the direction then set equal to this new point;
- repeat from step 2 until the convergence criterion is satisfied.
2.3. The Objective Function
2.3.1. Power Estimation
2.3.2. Penalty Function
3. Application of the Proposed Methodology
3.1. The Case Study
3.2. Application and Results
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Ainger, C.; Butler, D.; Caffor, I.; Crawford-Brown, D.; Helm, D.; Stephenson, T. A Low Carbon Water Industry in 2050; Technical Report; UK Environment Agency: Bristol, UK, 2009. [Google Scholar]
- Zilberman, D.; Sproul, T.; Rajagopal, D.; Sexton, S.; Hellegers, P. Rising energy prices and the economics of water in agriculture. Water Policy 2008, 10, 11–21. [Google Scholar] [CrossRef]
- Covelli, C.; Cimorelli, L.; Cozzolino, L.; Della Morte, R.; Pianese, D. Reduction in water losses in water distribution systems using pressure reduction valves. Water Sci. Technol. Water Supply 2016, 16, 1033–1045. [Google Scholar] [CrossRef]
- Covelli, C.; Cozzolino, L.; Cimorelli, L.; Della Morte, R.; Pianese, D. Optimal location and setting of PRVs in WDS for leakage minimization. Water Resour. Manag. 2016, 30, 1803–1817. [Google Scholar] [CrossRef]
- Fecarotta, O.; McNabola, A. Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage. Water Resour. Manag. 2017, 31, 5043–5059. [Google Scholar] [CrossRef]
- Giugni, M.; Fontana, N.; Ranucci, A. Optimal Location of PRVs and Turbines in Water Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 06014004. [Google Scholar] [CrossRef]
- Corcoran, L.; McNabola, A.; Coughlan, P. Optimization of water distribution networks for combined hydropower energy recovery and leakage reduction. J. Water Resour. Plan. Manag. 2015, 142, 04015045. [Google Scholar] [CrossRef]
- Samora, I.; Franca, M.J.; Schleiss, A.J.; Ramos, H.M. Simulated annealing in optimization of energy production in a water supply network. Water Resour. Manag. 2016, 30, 1533–1547. [Google Scholar] [CrossRef]
- Brent, R.P. Algorithms for Minimization without Derivatives; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Rossman, L.A. EPANET 2 Users’ Manual; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2000. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran 90; Cambridge University Press: New York, NY, USA, 1996; Volume 2, pp. 402–408. [Google Scholar]
- Kiefer, J. Sequential minimax search for a maximum. Proc. Am. Math. Soc. 1953, 4, 502–506. [Google Scholar] [CrossRef]
- Pugliese, F.; De Paola, F.; Fontana, N.; Giugni, M.; Marini, G. Experimental characterization of two pumps as turbines for hydropower generation. Renew. Energy 2016, 99, 180–187. [Google Scholar] [CrossRef]
- Sârbu, I.; Borza, I. Energetic optimization of water pumping in distribution systems. Period. Polytech. Ser. Mech. Eng. 1998, 42, 141–152. [Google Scholar]
- Yang, S.S.; Derakhashan, S.; Kong, F.Y. Theoretical, numerical and experimental prediction of pump as turbine. Renew. Energy 2012, 48, 507–513. [Google Scholar] [CrossRef]
- Derakhshan, S.; Nourbakhsh, A. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp. Therm. Fluid Sci. 2008, 32, 800–807. [Google Scholar] [CrossRef]
Nodes | Pipes | ||||||
---|---|---|---|---|---|---|---|
Node ID | Elevation [m] | Demand [l/s] | Node 1 | Node 2 | Length [m] | Diameter [mm] | Manning coeff. |
1 | 80 | 0 | 2.2 | 3 | 50 | 200 | 0.01 |
2 | 16 | 0 | 2 | 2.1 | 50 | 200 | 0.01 |
3 | 15 | 7 | 2 | 4.1 | 60 | 150 | 0.01 |
4 | 14 | 7 | 4.2 | 4 | 60 | 150 | 0.01 |
5 | 13 | 7 | 2 | 5.1 | 50 | 150 | 0.01 |
2.1 | 17.5 | 0 | 5.2 | 5 | 50 | 150 | 0.01 |
2.2 | 17.5 | 0 | 5 | 5.3 | 50 | 100 | 0.01 |
4.1 | 17 | 0 | 5.4 | 4 | 50 | 100 | 0.01 |
4.2 | 17 | 0 | 4 | 3.2 | 50 | 100 | 0.01 |
5.1 | 16.5 | 0 | 3.1 | 3 | 50 | 100 | 0.01 |
5.2 | 16.5 | 0 | 1 | 1.1 | 300 | 250 | 0.01 |
3.1 | 14.5 | 0 | 1.2 | 2 | 1 | 250 | 0.01 |
3.2 | 14.5 | 0 | 3.1 | 3.2 | 1 | 100 | 0.01 |
5.3 | 13.5 | 0 | 5.1 | 5.2 | 1 | 150 | 0.01 |
5.4 | 13.5 | 0 | 4.1 | 4.2 | 1 | 150 | 0.01 |
1.1 | 16 | 0 | 2.1 | 2.2 | 1 | 200 | 0.01 |
1.2 | 16 | 0 | 1.1 | 1.2 | 1 | 250 | 0.01 |
5.3 | 5.4 | 1 | 100 | 0.01 |
Hour | Scenario 1 | Scenario 2 | Scenario 3 | ||||
---|---|---|---|---|---|---|---|
n. | V (1.1 to 1.2) | kWh | V (2.1 to 2.2) | kWh | V (1.1 to 1.2) | V (2.1 to 2.2) | kWh |
1 | 0.103 | 0.0028 | 0 | 0 | 0.103 | 0 | 0.0028 |
2 | 0.103 | 0.0028 | 0 | 0 | 0.103 | 0 | 0.0028 |
3 | 0.169 | 0.0286 | 0 | 0 | 0.169 | 0 | 0.0286 |
4 | 0.229 | 0.0704 | 0 | 0 | 0.229 | 0 | 0.0704 |
5 | 0.375 | 0.251 | 0 | 0 | 0.375 | 0 | 0.251 |
6 | 0.807 | 1.6738 | 0.103 | 0.01 | 0.807 | 0.103 | 1.6831 |
7 | 0.975 | 9.8045 | 0.172 | 0.07 | 0.975 | 0 | 9.8042 |
8 | 0.3 | 2.9992 | 0.28 | 0.29 | 0.3 | 0 | 3.0006 |
9 | 0.936 | 10.344 | 0.177 | 0.07 | 0.936 | 0.467 | 10.344 |
10 | 0.807 | 1.6738 | 0.103 | 0.01 | 0.807 | 0.103 | 1.6831 |
11 | 1 | 3.5964 | 0.12 | 0.02 | 1 | 0.114 | 3.6166 |
12 | 0.541 | 9.036 | 0.207 | 0.12 | 0.541 | 0.545 | 9.0372 |
13 | 0.957 | 2.8447 | 0.111 | 0.02 | 0.957 | 0.106 | 2.8608 |
14 | 0.963 | 1.035 | 0.103 | 0.01 | 0.963 | 0.103 | 1.0415 |
15 | 0.444 | 0.4073 | 0 | 0 | 0.444 | 0.103 | 0.4088 |
16 | 0.307 | 0.1415 | 0 | 0 | 0.307 | 0 | 0.1415 |
17 | 0.229 | 0.0704 | 0 | 0 | 0.229 | 0 | 0.0704 |
18 | 0.444 | 0.4073 | 0 | 0 | 0.444 | 0.103 | 0.4088 |
19 | 0.963 | 1.035 | 0.103 | 0.01 | 0.963 | 0.103 | 1.0415 |
20 | 1 | 7.4998 | 0.155 | 0.05 | 1 | 0.145 | 7.5437 |
21 | 0.585 | 0.8969 | 0 | 0 | 0.585 | 0.103 | 0.9013 |
22 | 0.307 | 0.1415 | 0 | 0 | 0.307 | 0 | 0.1415 |
23 | 0.103 | 0.0028 | 0 | 0 | 0.103 | 0 | 0.0028 |
24 | 0.103 | 0.0028 | 0 | 0 | 0.103 | 0 | 0.0028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimorelli, L.; D’Aniello, A.; Cozzolino, L.; Pianese, D. A Derivative Free Non-Linear Programming Method for the Optimal Setting of PATs to Be Used in a Hybrid Genetic Algorithm: A Preliminary Work. Proceedings 2018, 2, 684. https://doi.org/10.3390/proceedings2110684
Cimorelli L, D’Aniello A, Cozzolino L, Pianese D. A Derivative Free Non-Linear Programming Method for the Optimal Setting of PATs to Be Used in a Hybrid Genetic Algorithm: A Preliminary Work. Proceedings. 2018; 2(11):684. https://doi.org/10.3390/proceedings2110684
Chicago/Turabian StyleCimorelli, Luigi, Andrea D’Aniello, Luca Cozzolino, and Domenico Pianese. 2018. "A Derivative Free Non-Linear Programming Method for the Optimal Setting of PATs to Be Used in a Hybrid Genetic Algorithm: A Preliminary Work" Proceedings 2, no. 11: 684. https://doi.org/10.3390/proceedings2110684
APA StyleCimorelli, L., D’Aniello, A., Cozzolino, L., & Pianese, D. (2018). A Derivative Free Non-Linear Programming Method for the Optimal Setting of PATs to Be Used in a Hybrid Genetic Algorithm: A Preliminary Work. Proceedings, 2(11), 684. https://doi.org/10.3390/proceedings2110684