Multimodal Database for Human Activity Recognition and Fall Detection †
Abstract
:1. Introduction
2. Fall Detection Databases Overview
2.1. Sensor-Based Fall Databases
2.2. Multimodal Fall Databases
3. UP-Fall Detection and Activity Recognition Database
3.1. Data Acquisition System for Fall Detection and Activity Recognition
- 4 Inertial Measurement Units (IMUs).
- 1 Electroencephalogram Helmet (EEG)
- 4 (absence/presence) Ambient Infrared sensors.
- RaspberryPI3
- PC and External USB Bluetooth
- Sensing.—Each component starts sensing the actions with the different sensors at the same time, the data to be sensing are: IMU’s: Accelerometer (X, Y and Z), Ambient Light (L) and Angular Velocity (X (rad/s), Y (rad/s) and Z (rad/s)). Helmet EEG: signals. Infrared sensor: absence-presence with binary value.
- Recollection.—The recollection phase consists in gathering data through Bluetooth connection, with IMU’s and EEG Helmet devices. Data are converted to JSON structure (Figure 1) to be sent to Cloud (Firebase). This process is made with C# program using SDK’s from IMU’s and EEG Helmet to provide us full access to the sensors data. Infrared sensors are connected directly to raspsberrypy3 in which a Python program allows to take data and convert them to JSON in order to store them in the cloud.
- Storage.—Once that information has been collected and prepared in JSON structure packages, it is sent via POST request to be storage into firebase (noSQL database). In order to achieve this connection, a RESTAPI platform was configured to storage every POST request into firebase database as a new data.
3.2. Database Description
4. Experiments and Results
4.1. Feature Extraction
4.2. Classification
5. Conclusions and Future Work
Funding
References
- Gale, C.R.; Cooper, C.; Sayer, A. Prevalence and risk factors for falls in older men and women: The English Longitudinal Study of Ageing. Age Ageing 2016, 45, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, S.A.; Alhassan, A.M.; Aldawsari, M.A.; Bazuhair, F.O.; Alotaibi, F.K.; Aldakhil, A.A.; Abdulfattah, F.W. Falls among elderly and its relation with their health problems and surrounding environmental factors in Riyadh. J. Fam. Commun. Med. 2018, 25, 29. [Google Scholar]
- Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Noury, N.; Fleury, A.; Rumeau, P.; Bourke, A.K.; Laighin, G.O.; Rialle, V.; Lundy, J.E. Fall detection-principles and methods. In Proceedings of the 29th Annual International Conference of the Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1663–1666. [Google Scholar]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Lahat, D.; Adali, T.; Jutten, C. Multimodal data fusion: An overview of methods, challenges, and prospects. Proc. IEEE 2015, 103, 1449–1477. [Google Scholar] [CrossRef]
- Koshmak, G.; Loutfi, A.; Linden, M. Challenges and issues in multisensor fusion approach for fall detection. J. Sens. 2016. [Google Scholar] [CrossRef]
- Igual, R.; Medrano, C.; Plaza, I. A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 2015, 37, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J. Analysis of public datasets for wearable fall detection systems. Sensors 2017, 17, 1513. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.; Nadales, V.; Robertson, M.J.; Pfeifer, T. Bayesian recognition of motion related activities with inertial sensors. In Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiquitous Computing-Adjunct, Copenhagen, Denmark, 26–29 September 2010. [Google Scholar]
- Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.G.; Tsiknakis, M. The mobifall dataset: Fall detection and classification with a smartphone. Int. J. Monit. Surveillance Technol. Res. 2014, 2, 44–56. [Google Scholar] [CrossRef]
- Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 2014, 9, e94811. [Google Scholar] [CrossRef] [PubMed]
- Vilarinho, T.; Farshchian, B.; Bajer, D.; Dahl, O.; Egge, I.; Hegdal, S.S.; Lønes, A.; Slettevold, J.N.; Weggersen, S.M. A combined smartphone and smartwatch fall detection system. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), Liverpool, UK,, 26–28 October 2015; pp. 1443–1448. [Google Scholar]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef] [PubMed]
- Kepski, M.; Kwolek, B.; Austvoll, I. Fuzzy inference-based reliable fall detection using kinect and accelerometer. In Artificial Intelligence and Soft Computing of Lecture Notes in Computer Science; Springer: Berlin, Germany, 2012; pp. 266–273. [Google Scholar]
- Kwolek, B.; Kepski, M. Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 2015, 168, 637–645. [Google Scholar] [CrossRef]
- Ofli, F.; Chaudhry, R.; Kurillo, G.; Vidal, R.; Bajcsy, R. Berkeley MHAD: A comprehensive multimodal human action database. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Tampa, FL, USA, 15–17 January 2013; pp. 53–60. [Google Scholar]
- Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013, 14, 28–44. [Google Scholar] [CrossRef]
- DLRdataset. Available online: www.dlr.de/kn/en/Portaldata/27/Resources/dokumente/04_abteilungen_fs/kooperative_systeme/high_precision_reference_data/Activity_DataSet.zip (accessed on 10 May 2018).
- MobiFalldataset. Available online: http://www.bmi.teicrete.gr/index.php/research/mobifall (accessed on 10 January 2016).
- EduQTech, tFall: EduQTechdataset. Published July 2013. Available online: http://eduqtech.unizar.es/fall-adl-data/ (accessed on 10 May 2018).
- Sistemas Embebidos e Inteligencia Computacional, SISTEMIC: SisFall Dataset. Available online: http://sistemic.udea.edu.co/investigacion/proyectos/english-falls/?lang=en (accessed on 10 May 2018).
- Rimminen, H.; Lindström, J.; Linnavuo, M.; Sepponen, R. Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1475–1476. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, H.W.; Chen, M.Y.; Chen, J.Y. Design of fall detection system with floor pressure and infrared image. In Proceedings of the 2010 International Conference on System Science and Engineering (ICSSE), Taipei, Taiwan, 1–3 July 2010; pp. 131–135. [Google Scholar]
- Mastorakis, G.; Makris, D. Fall detection system using Kinect’s infrared sensor. J. Real-Time Image Process. 2012, 1–12. [Google Scholar] [CrossRef]
- URFD University of Kseszow Fall Detection Dataset. Available online: http://fenix.univ.rzeszow.pl/mkepski/ds/uf.html (accessed on 10 May 2018).
- Teleimmersion Lab, University of California, Berkeley, 2013, Berkeley Multimodal Human Action Database (MHAD). Available online: http://tele-immersion.citris-uc.org/berkeley_mhad (accessed on 10 May 2018).
Activity | Duration (sec) | |
---|---|---|
ADL | Walking (W) | 60 s |
Standing (ST) | 60 s | |
Sitting (SI) | 10 s | |
Laying (L) | 60 s | |
Pick up something (P) | 10 s | |
Jumping (J) | 30 s | |
Falls | Fall use hands (FH) | 10 s |
Fall forward knees (FF) | 10 s | |
Fall backwards (FB) | 10 s | |
Fall sideward (FS) | 10 s | |
Fall sitting in empty chair (FE) | 10 s |
Subject | Gender | Height (Meters) | Weight (kg) | Age (Years) |
---|---|---|---|---|
1 | Female | 1.65 | 56 | 58 |
2 | Female | 1.70 | 82 | 51 |
3 | Male | 1.80 | 57 | 32 |
4 | Male | 1.72 | 75 | 22 |
Temporal Signal (x 33 Signals from Original): | Frequency Signal: | Sampling: |
---|---|---|
[1:33]—mean [34:66]—standard deviation [67:99]—root mean square [100:132]—maximum [133:165]—minimum [166:198]—median [199:231]—skewness [232:264]—kurtosis [265:297]—quantile 1 [298:330]—quantile 3 | [331:363]—mean [364:396]—median [397:429]—energy | [430]: subject number [431]: activity number [432]: trial number |
Method | IMUs | IMUs + Context | ||||
---|---|---|---|---|---|---|
2 seg | 3 seg | 5 seg | 2 seg | 3 seg | 5 seg | |
LDA | 0.5839 | 0.5098 | 0.2858 | 0.5991 | 0.4884 | 0.4160 |
CART | 0.6206 | 0.5893 | 0.5691 | 0.6226 | 0.5877 | 0.5691 |
NB | 0.1525 | 0.1818 | 0.4413 | 0.1598 | 0.2216 | 0.4719 |
SVM | 0.6908 | 0.6625 | 0.6279 | 0.6918 | 0.6488 | 0.6457 |
RF | 0.6907 | 0.6487 | 0.6252 | 0.6816 | 0.6443 | 0.6273 |
KNN | 0.6795 | 0.6502 | 0.6303 | 0.6561 | 0.6396 | 0.6305 |
NN | 0.6866 | 0.6626 | 0.6454 | 0.6758 | 0.6488 | 0.6403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Villaseñor, L.; Ponce, H.; Espinosa-Loera, R.A. Multimodal Database for Human Activity Recognition and Fall Detection. Proceedings 2018, 2, 1237. https://doi.org/10.3390/proceedings2191237
Martínez-Villaseñor L, Ponce H, Espinosa-Loera RA. Multimodal Database for Human Activity Recognition and Fall Detection. Proceedings. 2018; 2(19):1237. https://doi.org/10.3390/proceedings2191237
Chicago/Turabian StyleMartínez-Villaseñor, Lourdes, Hiram Ponce, and Ricardo Abel Espinosa-Loera. 2018. "Multimodal Database for Human Activity Recognition and Fall Detection" Proceedings 2, no. 19: 1237. https://doi.org/10.3390/proceedings2191237