Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Sentinel 2 Data
2.3. LiDAR Data
2.4. Supervised Clasification
3. Results
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fragoso, L.; Quirós, E.; Durán-Barroso, P. Resource communication: Variability in estimated runoff in a forested area based on different cartographic data sources. For. Syst. 2017, 26, 2. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne lidar, and the random forest algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Godinho, S.; Guiomar, N.; Gil, A. Estimating tree canopy cover percentage in a mediterranean silvopastoral systems using sentinel-2a imagery and the stochastic gradient boosting algorithm. Int. J. Remote Sens. 2017, 39, 4640–4662. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with sentinel-2 data for crop and tree species classifications in central europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium; Technical Presentations; NASA: Washington, DC, USA, 1974; Volume I, p. 309. [Google Scholar]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 259–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.; Kerr, Y.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from eos-modis. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gebhardt, S.; Wehrmann, T.; Ruiz, M.A.M.; Maeda, P.; Bishop, J.; Schramm, M.; Kopeinig, R.; Cartus, O.; Kellndorfer, J.; Ressl, R. Mad-mex: Automatic wall-to-wall land cover monitoring for the mexican redd-mrv program using all landsat data. Remote Sens. 2014, 6, 3923–3943. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed dynamic land cover mapping of chile: Accuracy improvement by integrating multi-temporal data. Remote Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- Bork, E.W.; Su, J.G. Integrating lidar data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sens. Environ. 2007, 111, 11–24. [Google Scholar] [CrossRef]
- Erdody, T.L.; Moskal, L.M. Fusion of lidar and imagery for estimating forest canopy fuels. Remote Sens. Environ. 2010, 114, 725–737. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Salas, J.; Danson, F.M. Multispectral and lidar data fusion for fuel type mapping using support vector machine and decision rules. Remote Sens. Environ. 2011, 115, 1369–1379. [Google Scholar] [CrossRef]
- Mundt, J.T.; Streutker, D.R.; Glenn, N.F. Mapping sagebrush distribution using fusion of hyperspectral and lidar classifications. Photogramm. Eng. Remote Sens. 2006, 72, 47–54. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- González-Ferreiro, E.; Diéguez-Aranda, U.; Miranda, D. Estimation of stand variables in pinus radiata d. Don plantations using different lidar pulse densities. Forestry 2012, 85, 281–292. [Google Scholar] [CrossRef]
- MAPAMA. Mapa de Cultivos y Aprovechamientos de España 2000–2010. Available online: http://www.mapama.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_2000_2009.aspx (accessed on 10 January 2018).
- Instituto-Geográfico-Nacional. Centro de Descargas. Available online: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 5 October 2017).
- McGaughey, R.J. Fusion/ldv: Software for Lidar Data Analysis and Visualization; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2009; Volume 123.
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
Classification Considering Optical Data | Classification Considering Optical Data as Well as LiDAR Metrics | |||
---|---|---|---|---|
User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | |
Forest | 69% | 49% | 83% | 59% |
Shrub | 59% | 81% | 68% | 84% |
Herbaceous | 95% | 90% | 95% | 88% |
Water | 100% | 40% | 100% | 10% |
Rock | 100% | 89% | 95% | 90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragoso-Campón, L.; Quirós, E.; Mora, J.; Gutiérrez, J.A.; Durán-Barroso, P. Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed. Proceedings 2018, 2, 1280. https://doi.org/10.3390/proceedings2201280
Fragoso-Campón L, Quirós E, Mora J, Gutiérrez JA, Durán-Barroso P. Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed. Proceedings. 2018; 2(20):1280. https://doi.org/10.3390/proceedings2201280
Chicago/Turabian StyleFragoso-Campón, Laura, Elia Quirós, Julián Mora, José Antonio Gutiérrez, and Pablo Durán-Barroso. 2018. "Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed" Proceedings 2, no. 20: 1280. https://doi.org/10.3390/proceedings2201280
APA StyleFragoso-Campón, L., Quirós, E., Mora, J., Gutiérrez, J. A., & Durán-Barroso, P. (2018). Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed. Proceedings, 2(20), 1280. https://doi.org/10.3390/proceedings2201280