The Use of Thermal Water Vapor Arc Plasma as an Oily Soil Remediation Technique †
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bocos, E.; Fernández-Costas, C.; Pazos, M.; Sanromán, M.A. Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere 2015, 125, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.W.; Lau, E.V.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Formation and roles of hydrogen peroxide during soil remediation by direct multi-channel pulsed corona discharge in soil. Sep. Purif. Technol. 2015, 147, 17–23. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary Cementitious Materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Mu, R.; Cheng, W.; Ognier, S. Evaluation of pulsed corona discharge plasma for treatment of petroleum-contaminated soil. Environ. Sci. Pollut. Res. 2017, 24, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
Element | Clean Soil, at 1 % | Soil Polluted with Diesel, at % | Polluted Soil Treated with Water Vapor Plasma, at % | ||||
---|---|---|---|---|---|---|---|
80 g/kg 2 | 120 g/kg | 160 g/kg | 80 g/kg | 120 g/kg | 160 g/kg | ||
Carbon | 5.06 | 10.39 | 15.56 | 20.29 | 4.03 | 2.23 | 3.45 |
Oxygen | 63.95 | 61.05 | 61.68 | 58.68 | 61.57 | 63.84 | 62.30 |
Silicon | 21.71 | 18.62 | 15.33 | 12.49 | 23.8 | 23.88 | 25.87 |
Potassium | 1.38 | 1.15 | 0.8 | 0.77 | 1.73 | 1.29 | 0.94 |
Calcium | 1.23 | 1.26 | 1.09 | 1.3 | 1.29 | 1.77 | 1.06 |
Magnesium | 0.6 | 0.92 | 0.59 | 0.82 | 0.71 | 0.72 | 0.68 |
Aluminium | 4.32 | 4.69 | 3.13 | 3.86 | 4.74 | 4.22 | 3.92 |
Iron | 1.2 | 1.52 | 1.43 | 1.38 | 1.7 | 1.58 | 1.41 |
Sodium | 0.36 | 0.22 | 0.21 | 0.21 | 0.16 | 0.22 | 0.19 |
Titanium | 0.19 | 0.18 | 0.18 | 0.2 | 0.27 | 0.24 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimžauskaitė, D.; Tamošiūnas, A.; Tučkutė, S.; Snapkauskienė, V.; Aikas, M.; Uscila, R. The Use of Thermal Water Vapor Arc Plasma as an Oily Soil Remediation Technique. Proceedings 2018, 2, 1500. https://doi.org/10.3390/proceedings2231500
Gimžauskaitė D, Tamošiūnas A, Tučkutė S, Snapkauskienė V, Aikas M, Uscila R. The Use of Thermal Water Vapor Arc Plasma as an Oily Soil Remediation Technique. Proceedings. 2018; 2(23):1500. https://doi.org/10.3390/proceedings2231500
Chicago/Turabian StyleGimžauskaitė, Dovilė, Andrius Tamošiūnas, Simona Tučkutė, Vilma Snapkauskienė, Mindaugas Aikas, and Rolandas Uscila. 2018. "The Use of Thermal Water Vapor Arc Plasma as an Oily Soil Remediation Technique" Proceedings 2, no. 23: 1500. https://doi.org/10.3390/proceedings2231500
APA StyleGimžauskaitė, D., Tamošiūnas, A., Tučkutė, S., Snapkauskienė, V., Aikas, M., & Uscila, R. (2018). The Use of Thermal Water Vapor Arc Plasma as an Oily Soil Remediation Technique. Proceedings, 2(23), 1500. https://doi.org/10.3390/proceedings2231500