A Comparison between Wasserstein Distance and a Distance Induced by Fisher-Rao Metric in Complex Shapes Clustering †
Abstract
:1. Introduction
2. The Method
3. A Simulation Experiment
- are zero mean random error matrices simulated from the multivariate Normal distribution with covariance structure
- is the mean shape for cluster h
- is an orthogonal rotation matrix with an angle uniformly produced in the range
- is a uniform translation vector in the range .
- Isotropic with with independent spherical variation around each mean landmark
- Heteroscedastic with with a heteroscedastic variation around each mean landmark.
References
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Cootes, S.; Taylor, C.; Cooper, D.; Graham, J. Active shape models-their training and application. Comput. Vis. Image Underst. 1995, 61, 38–59. [Google Scholar] [CrossRef]
- Kendall, D.G. Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 1984, 16, 81–121. [Google Scholar] [CrossRef]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis; John Wiley & Sons: London, UK, 1998. [Google Scholar]
- Amaral, G.; Dore, L.; Lessa, R.; Stosic, B. k-Means Algorithm in Statistical Shape Analysis. Commun. Stat. Simul. Comput. 2010, 39, 1016–1026. [Google Scholar] [CrossRef]
- Stoyan, D.; Stoyan, H. A further application of D.G. Kendall’s Procrustes Analysis. Biom. J. 1990, 32, 293–301. [Google Scholar] [CrossRef]
- Lele, S.; Richtsmeier, J. An Invariant Approach to Statistical Analysis of Shapes; Chapman & Hall/CRC: New York, NY, USA, 2001. [Google Scholar]
- Huang, C.; Styner, M.; Zhu, H. Clustering High-Dimensional Landmark-based Two-dimensional Shape Data. J. Am. Stat. Assoc. 2016, 19, 702–723. [Google Scholar] [CrossRef] [PubMed]
- Kume, A.; Welling, M. Maximum likelihood estimation for the offset-normal shape distributions using EM. J. Comput. Graph. Stat. 2010, 19, 702–723. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; Translations of Mathematical Monographs; AMS & Oxford University Press: Providence, RI, USA, 2000; Volume 191. [Google Scholar]
- Murray, M.K.; Rice, J.W. Differential Geometry and Statistics; Chapman & Hall: Boca Raton, FL, USA, 1984. [Google Scholar]
- Srivastava, A.; Joshi, S.H.; Mio, W.; Liu, X. Statistical Shape analysis: Clustering, learning, and testing. IEEE Trans. PAMI 2005, 27, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Mio, W.; Srivastava, A.; Joshi, S.H. On Shape of Plane Elastic Curves. Int. J. Comput. Vis. 2007, 73, 307–324. [Google Scholar] [CrossRef]
- De Sanctis, A.; Gattone, S.A. Methods of Information Geometry to model complex shapes. Eur. Phys. J. Spec. Top. 2016, 225, 1271–1279. [Google Scholar] [CrossRef]
- Gattone, S.A.; De Sanctis, A. A shape distance based on the Fisher-Rao metric and its application for shapes clustering. Physical A 2017, 487, 93–102. [Google Scholar] [CrossRef]
- Costa, S.; Santos, S.; Strapasson, J. Fisher information distance: A geometrical reading. Discret. Appl. Math. 2015, 197, 59–69. [Google Scholar] [CrossRef]
- Takatsu, A. Wasserstein geometry of Gaussian measures. Osaka J. Math. 2011, 48, 1005–1026. [Google Scholar]
- Otto, F. The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Differ. Equ. 2001, 26, 101–174. [Google Scholar] [CrossRef]
- Hubert, L.; Arabie, P. Comparing Partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
Model | Fisher-Rao | Wasserstein |
---|---|---|
Isotropic-small error | 0.8848 | 0.9553 |
Isotropic-high error | 0.6265 | 0.7457 |
Heteroscedastic-small error | 0.8854 | 0.9606 |
Heteroscedastic-high error | 0.8367 | 0.6616 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanctis, A.D.; Gattone, S.A. A Comparison between Wasserstein Distance and a Distance Induced by Fisher-Rao Metric in Complex Shapes Clustering. Proceedings 2018, 2, 163. https://doi.org/10.3390/ecea-4-05016
Sanctis AD, Gattone SA. A Comparison between Wasserstein Distance and a Distance Induced by Fisher-Rao Metric in Complex Shapes Clustering. Proceedings. 2018; 2(4):163. https://doi.org/10.3390/ecea-4-05016
Chicago/Turabian StyleSanctis, Angela De, and Stefano A. Gattone. 2018. "A Comparison between Wasserstein Distance and a Distance Induced by Fisher-Rao Metric in Complex Shapes Clustering" Proceedings 2, no. 4: 163. https://doi.org/10.3390/ecea-4-05016
APA StyleSanctis, A. D., & Gattone, S. A. (2018). A Comparison between Wasserstein Distance and a Distance Induced by Fisher-Rao Metric in Complex Shapes Clustering. Proceedings, 2(4), 163. https://doi.org/10.3390/ecea-4-05016