Data Mining Using NDVI Time Series Applied to Change Detection †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition and Pre-Processing of the Data
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Jacques, D.C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Defourny, P. Monitoring Dry Vegetation Masses in Semi-Arid Areas With Modis Swir Bands. Remote Sens. Environ. 2014, 153, 40–49. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente (Mma). Biomas—Caatinga. Available online: www.mma.gov.br/biomas/caatinga (accessed on 8 August 2017).
- Silva, A.C.D.C.; Prata, A.P.D.N.; Souto, L.S.; Mello, A.A.D. Aspectos de ecologia de paisagem e ameaças à biodiversidade em uma unidade de conservação na Caatinga, em Sergipe. Rev. Árvore 2013, 37, 479–490. [Google Scholar] [CrossRef]
- Suemi Saito, N.; Paiva Arguello, F.V.; Alves Moreira, M.; Rosa Dos Santos, A.; Coelho Eugenio, F.; Costa Figueiredo, A. Uso da geotecnologia para análise temporal da cobertura florestal. Cerne 2016, 22, 11–18. [Google Scholar] [CrossRef]
- Korting, T.S. GeoDMA: A Toolbox Integrating Data Mining with Object-Based and Multi-Temporal Analysis of Satellite Remotely Sensed Imagery. Ph.D. Thesis, Inpe-Instituto Nacional De Pesquisas Ambientais, São José Dos Campos, Brazil, 2012. [Google Scholar]
- Ibge. Instituto Brasileiro De Geografa E Estatística. In Banco De Dados Agregados. Available online: www.ibge.gov.br (accessed on 8 August 2017).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of The Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Tomasella, J.; Alvalá, R.C.S.; Sestini, M.F.; Affonso, A.G.; Rodriguez, D.A.; Barbosa, A.A.; Cunha, A.P.M.A.; Valles, G.F.; Crepani, E.; et al. Identifying Areas Susceptible to Desertification in the Brazilian Northeast. Solid Earth 2015, 6, 347–360. [Google Scholar] [CrossRef]
- Kamel, D. Mod13q1 Modis/Terra Vegetation Indices 16-Day L3 Global 250 m Sin Grid; Nasa Lp Daac. University of Arizona, Alfredo Huete—University of Technology Sydney and Modaps Sips—Nasa: Washington, DC, USA, 2015. [Google Scholar]
- Korting, T.S.; Garcia Fonseca, L.M.; Câmara, G. Geodma—Geographic Data Mining Analyst. Comput. Geosci. 2013, 57, 133–145. [Google Scholar]
- Korting, T.S.; Fonseca, L.M.; Escada, M.I.S.; Silva, F.C.; Silva, M.P.S. Geodma: A Novel System for Spatial Data Mining. In Proceedings of the IEEE International Conference on Data Mining Workshops, Pisa, Italy, 15–19 December 2008. [Google Scholar]
- Bins, L.; Fonseca, L.M.; Erthal, G.J.; Mitsuo Ii, F. Satellite Imagery Segmentation: A Region Growing Approach. Proceeidngs of the Simpósio Brasileiro De Sensoriamento Remoto, Salvador, Brasil, 14–19 May 1996; pp. 677–680. [Google Scholar]
Area 2010 (km2) | ||
---|---|---|
NVDI Classification | SAP Reference | |
Tree Cover | 1927 | 1746 |
Cropland/Grass | 725 | 907 |
Total | 2653 | 2653 |
Classes | Tree Cover | Cropland/Grass | Total |
---|---|---|---|
Tree Cover | 151 | 31 | 182 |
Cropland/Grass | 19 | 64 | 83 |
Total | 170 | 95 | 265 |
Kappa Index | 0.58 | ||
Global Accuracy | 0.81 | ||
Z Test | 10.88 |
Classes | Producer Accuracy | Omission Error | Consumer Accuracy | Inclusion Error |
---|---|---|---|---|
Tree Cover | 88.82 | 11.17 | 82.96 | 17.03 |
Cropland/Grass | 67.36 | 32.63 | 77.10 | 22.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutra, A.C.; Shimabukuro, Y.E.; Escada, M.I.S. Data Mining Using NDVI Time Series Applied to Change Detection. Proceedings 2018, 2, 356. https://doi.org/10.3390/ecrs-2-05169
Dutra AC, Shimabukuro YE, Escada MIS. Data Mining Using NDVI Time Series Applied to Change Detection. Proceedings. 2018; 2(7):356. https://doi.org/10.3390/ecrs-2-05169
Chicago/Turabian StyleDutra, Andeise Cerqueira, Yosio Edemir Shimabukuro, and Maria Isabel Sobral Escada. 2018. "Data Mining Using NDVI Time Series Applied to Change Detection" Proceedings 2, no. 7: 356. https://doi.org/10.3390/ecrs-2-05169
APA StyleDutra, A. C., Shimabukuro, Y. E., & Escada, M. I. S. (2018). Data Mining Using NDVI Time Series Applied to Change Detection. Proceedings, 2(7), 356. https://doi.org/10.3390/ecrs-2-05169