Biomedical Applications of Infrared Thermal Imaging: Current State of Machine Learning Classification †
Abstract
:1. Introduction
2. Results of the Literature Survey
Year [Ref.] | Biomedical Application | Best overall Classifier | Sample Size | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
2002 [9] | Breast cancer | ANN | 207 (76 healthy, 98 benign and 33 cancer) | 61.94 | 68.97 | 80.00 |
2008 [10] | Breast cancer | ANN | 82 (30 asymptomatic, 48 benign and 4 cancer) | 80.95 | 100.00 | 70.60 |
2008 [11] | Carpal tunnel syndrome | ANN | 56 (26 healthy and 30 pathological) | 80.60 | - | - |
2009 [12] | Carpal tunnel syndrome | ANN | 251 (132 healthy and 119 pathological) | 72.20 and 80.00 (severe cases) | - | - |
2009 [13] | Breast cancer | Fuzzy logic | 150 (105 normal and 45 cancer) | 80.98 | - | - |
2012 [14] | Breast cancer | SVM | 50 (25 normal and 25 cancerous) | 88.10 | 85.71 | 90.48 |
2012 [15] | Breast cancer | SVM | 96 (24 normal and 72 cancer) | 88.23 | - | - |
2013 [16] | Breast cancer | Naïve Bayes | 98 (21 healthy and 77 cancer) | 71.86 | - | - |
2013 [17] | Breast cancer | AdaBoost | 32 (11 healthy, 12 benign and 9 cancer) | 83.00 | - | - |
2013 [18] | Breast cancer | ANN | 150 (50 healthy, 50 benign and 50 cancer) | 88.76 | 81.37 | 90.59 |
2014 [19] | Dry Eye disease | k-NN | 81 (40 responded and 41 not responded) | 99.88 | 99.76 | 100.00 |
2014 [20] | Breast cancer | k-NN | 40 (26 normal and 14 abnormal) | 92.50 | - | - |
2014 [21] | Breast cancer | SVM | 22(16 normal and 6 cancer) | 90.91 | 81.82 | 100.00 |
2015 [22] | Back pain | SVM | 1000 (300 healthy, 200 faulty posture and 500 lateral spinal curvature) | - | 88.00 | 90.00 |
2015 [23] | Dry Eye disease | k-NN | 104 (21 healthy and 83 affected) | 99.80 | 99.80 | 99.80 |
2015 [24] | Breast cancer | k-NN | 22 (11 healthy and 11 cancer) | 90.91 | - | - |
2015 [25] | Breast cancer | ANN | 240 (160 healthy and 80 cancer) | 92.89 | - | - |
2015 [26] | Breast cancer | SVM | 80 (50 healthy and 30 with findings) | 91.25 | 93.30 | 90.00 |
2015 [27] | Diabetic foot | ANN | 60 (30 diabetic and 30 non-diabetic) | 94.33 | 97.33 | 91.33 |
2016 [28] | Finger skin injury | k-NN | 75 (50 normal and 25 affected) | 100.00 | - | - |
2016 [29] | Facial nerve function | RBFNN | 390 (unilateral) | 94.10 | - | - |
2016 [30] | Breast cancer | fuzzy active contours | 60 patients | 91.89 | 85.00 | - |
2016 [31] | Breast cancer | Fuzzy C Means | 670 images from 67 patients | 88.10 | 85.71 | 90.48 |
2016 [32] | Breast cancer | Decision Tree | 50 (25 normal and 25 cancer) | 98.00 | 96.66 | 100.00 |
2016 [33] | Thyroid abnormalities | Decision Tree | 51 (21 normal and 30 abnormal-hyper and hypo) | 95.00 | 96.00 | 92.00 |
2017 [34] | Drunkenness state | ANN | 41 (28 drunk and 13 sober) | 86.00 | - | - |
2017 [35] | Breast cancer | SVM | 80 (40 normal and 40 abnormal) | 90.00 | 87.50 | 92.50 |
2017 [36] | Exercise-induced fatigue | ANN+SVM | 5700 images from 19 subjects | 81.51 | - | - |
2017 [37] | Breast cancer | SVM | 244 (100 normal, 66 benign and 78 cancer) | 94.87 | - | - |
2017 [38] | Breath analysis | ANN | 25 experiments by 1 subject | 100.00 | - | - |
2017 [39] | Diabetic foot | k-NN | 117 (51 healthy, 33 with and 33 without neuropathy) | 93.16 | 90.91 | 98.04 |
2018 [40] | Rheumatoid arthritis | k-NN | 60 (30 controls and 30 patients) | 83.00 | 86.60 | 79.00 |
2018 [41] | Breast cancer | ANN | 725 (219 healthy, 371 benign lesions and 235 cancer) | 73.38 | 78.00 | 88.00 |
2018 [42] | Hypertension | ANN | 300 (150 healthy and 150 patients) | 89.00 | 85.70 | 92.90 |
2018 [43] | Expression recognition | ANN | 3561 from 22 subjects (2124 positive and 1437 negative) | 85.54 | - | - |
2018 [44] | Breast cancer | SVM | 120 (70 abnormal and 50 normal) | 98.00 | 98.00 | 98.00 |
2018 [45] | Burn wounds | Random forest | 34 patients | 85.35 | - | - |
2018 [46] | Diabetic foot | k-NN | 117 (51 health, 33 diabetics without neuropathy and 33 with) | 93.16 | 90.91 | 98.04 |
2018 [47] | Diabetes | Random forest | 338 (180 diabetic and 158 non diabetic) | 89.63 | 96.87 | 98.80 |
2018 [48] | Skin cancer | k-NN | 85 | 60.00 | - | - |
2018 [49] | Diabetic foot | k-NN | 54 | 92.50 | - | - |
2019 [50] | Breast cancer | SVM | 60 (25 healthy, 23 benign and 12 malignant) | 83.22 | 85.56 | 73.23 |
2019 [51] | Diabetic foot | ANN | 246 (150 Diabetic without complications, 36 with complications and 60 healthy) | 91.00 | - | - |
2019 [52] | Cardiovascular disease | Naïve Bayes | 150 (80 non-CVD and 70 CVD) | 90.00 | 80.00 | 90.00 |
2019 [53] | Hemodynamic Shock | Random forest | 539 (253 continuous intra-arterial blood pressure) | 73.00 | 65.00 | 82.00 |
2019 [54] | Stress recognition | ANN | 93 sets of data from 17 (9 males and 8 females) | 78.33 | - | - |
2019 [55] | Skin cancer | SVM | 320 (185 malignant and 135 benign) | 61.00 | 87.00 | 11.00 |
2019 [56] | Skin cancer | SVM | 46 (16 melanomas and 30 melanocytic nevi) cooling | 84.20 | 91.30 | 11.00 |
2019 [57] | Diabetic foot | k-NN | 39 (15 with DFU ischemic or infected) | 81.25 | 80.00 | 100.00 |
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K. The technique of infrared imaging in medicine. Thermol. Int. 2000, 10, 7–14. [Google Scholar]
- Ammer, K. The Glamorgan Protocol for recording and evaluation of thermal images of the human body, Thermol. Int. 2008, 18, 125–144. [Google Scholar]
- Schwartz, R.G.; Elliott, R.; Goldberg, G.S.; Govindan, S.; Conwell, T.; Hoekstra, P.P. Guidelines for neuromusculoskeletal thermography. Thermol. Int. 2006, 16, 5–9. [Google Scholar]
- Standards Technical Reference for Thermal Imagers for Human Temperature Screening Part 1: Requirements and Test Methods 2003 TR 15-1; Spring: Singapore, 2003.
- Standards Technical Reference for Thermal Imagers for Human Temperature Screening Part 2: Users’ Implementation Guidelines 2004 TR 15-2; Spring: Singapore, 2003.
- ISO TC121/SC3-IEC SC62D. Particular Requirements for the Basic Safety and Essential Performance of Screening Thermos-Graphs for Human Febrile Temperature Screening; ISO: Geneve, Switzerland, 2017. [Google Scholar]
- ISO/TR 13154:2009 ISO/TR 8-600. Medical Electrical Equipment—Deployment, Implementation and Operational Guidelines for Identifying Febrile Humans Using a Screening Thermograph; ISO: Geneve, Switzerland, 2017. [Google Scholar]
- Ng, E.Y.K.; Fok, S.C.; Peh, Y.C.; Ng, F.C.; Sim, L.S.J. Computerized detection of breast cancer with artificial intelligence and thermograms. J. Med. Eng. Technol. 2002, 26, 152–157. [Google Scholar] [CrossRef]
- Ng, E.Y.K.; Kee, E.C. Advanced integrated technique in breast cancer thermography. J. Med. Eng. Technol. 2008, 32, 103–114. [Google Scholar] [CrossRef]
- Papež, B.J.; Palfy, M.; Turk, Z. Infrared thermography based on artificial intelligence for carpal tunnel syndrome diagnosis. J. Int. Med. Res. 2008, 36, 1363–1370. [Google Scholar] [CrossRef]
- Papež, B.J.; Palfy, M.; Mertik, M.; Turk, Z. Infrared thermography based on artificial intelligence as a screening method for carpal tunnel syndrome diagnosis. J. Int. Med. Res. 2009, 37, 779–790. [Google Scholar] [CrossRef]
- Schaefer, G.; Závišek, M.; Nakashima, T. Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognit. 2009, 42, 1133–1137. [Google Scholar] [CrossRef]
- Acharya, U.R.; Ng, E.Y.K.; Tan, J.H.; Sree, S.V. Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 2012, 36, 1503–1510. [Google Scholar] [CrossRef]
- Resmini, R.; Borchartt, T.B.; Conci, A.; Lima, R.C. Auxílio ao Diagnóstico Precoce de Patologias da Mama Usando Imagens Térmicas e Técnicas de Mineração de Dados. In Proceedings of the COMPUTER ON THE BEACH 2012, Anais do Computer on the Beach (2012), São José, Brazil, 20–22 March 2012; pp. 305–314. [Google Scholar]
- Nicandro, C.R.; Efrén, M.M.; María Yaneli, A.A.; Enrique, M.D.C.M.; Héctor Gabriel, A.M.; Nancy, P.C.; Alejandro, G.H.; Guillermo de Jesús, H.R.; Rocío Erandi, B.M. Evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers. Comput. Math. Methods Med. 2013, 2013, 264246. [Google Scholar] [CrossRef]
- Etehadtavakol, M.; Chandran, V.; Ng, E.Y.K.; Kafieh, R. Breast cancer detection from thermal images using bispectral invariant features. Int. J. Therm. Sci. 2013, 69, 21–36. [Google Scholar] [CrossRef]
- Krawczyk, B.; Schaefer, G. A pruned ensemble classifier for effective breast thermogram analysis. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7120–7123. [Google Scholar]
- Acharya, U.R.; Tan, J.H.; Vidya, S.; Yeo, S.; Too, C.L.; Lim, W.J.E.; Chua, K.C.; Tong, L. Diagnosis of response and non-response to dry eye treatment using infrared thermography images. Infrared Phys. Technol. 2014, 67, 497–503. [Google Scholar] [CrossRef]
- Milosevic, M.; Jankovic, D.; Peulic, A. Thermography based breast cancer detection using texture features and minimum variance quantization. EXCLI J. 2014, 13, 1204–1215. [Google Scholar]
- Francis, S.V.; Sasikala, M.; Saranya, S. Detection of breast abnormality from thermograms using curvelet transform based feature extraction. J. Med. Syst. 2014, 38, 23. [Google Scholar] [CrossRef]
- Koprowski, R. Automatic analysis of the trunk thermal images from healthy subjects and patients with faulty posture. Comput. Biol. Med. 2015, 62, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Tan, J.H.; Koh, J.E.; Sudarshan, V.K.; Yeo, S.; Too, C.L.; Chua, C.K.; Ng, E.Y.K.; Tong, L. Automated diagnosis of dry eye using infrared thermography images. Infrared Phys. Technol. 2015, 71, 263–271. [Google Scholar] [CrossRef]
- Silva, L.F.; Sequeiros, G.O.; Santos, M.L.O.; Fontes, C.A.; Muchaluat-Saade, D.C.; Conci, A. Thermal Signal Analysis for Breast Cancer Risk Verification. Stud. Health Technol. Inform. 2015, 216, 746–750. [Google Scholar]
- Wahab, A.A.; Salim, M.I.M.; Yunus, J.; Aziz, M.N.C. Tumor localization in breast thermography with various tissue compositions by using Artificial Neural Network. In Proceedings of the IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 13–14 December 2015; pp. 484–488. [Google Scholar]
- Ali, M.A.; Sayed, G.I.; Gaber, T.; Hassanien, A.E.; Snasel, V.; Silva, L.F. Detection of breast abnormalities of thermograms based on a new segmentation method. In Proceedings of the IEEE Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 255–261. [Google Scholar]
- Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.; Renero-Carrillo, F. Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum. Infrared Phys. Technol. 2015, 73, 149–157. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Recognition of images of finger skin with application of histogram, image filtration and K-NN classifier. Biocybern. Biomed. Eng. 2016, 36, 95–101. [Google Scholar] [CrossRef]
- Liu, X.L.; Fu, B.R.; Xu, L.W.; Lu, N.; Yu, C.Y.; Bai, L.Y. Automatic assessment of facial nerve function based on infrared thermal imaging. Guang Pu Xue Yu Guang Pu Fen Xi 2016, 36, 1445–1450. [Google Scholar]
- Zadeh, H.G.; Haddadnia, J.; Seryasat, O.R.; Isfahani, S.M.M. Segmenting breast cancerous regions in thermal images using fuzzy active contours. EXCLI J. 2016, 15, 532–550. [Google Scholar]
- Lashkari, A. Early Breast Cancer Detection in Thermogram Images using Supervised and Unsupervised Algorithms. Middle East J. Cancer 2016, 7, 113–124. [Google Scholar]
- Raghavendra, U.; Rajendra Acharya, U.; Ng, E.Y.K.; Tan, J.H.; Gudigar, A. An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms. Quant. InfraRed Thermogr. J. 2016, 13, 195–209. [Google Scholar] [CrossRef]
- Gopinath, M.P.; Prabu, S. Classification of thyroid abnormalities on thermal image: A study and approach. IIOAB J. 2016, 7, 41–57. [Google Scholar]
- Koukiou, G.; Anastassopoulos, V. Fusion of Dissimilar Features from Thermal Imaging for Improving Drunk Person Identification. Int. J. Signal Process. Syst. 2017, 5, 106–111. [Google Scholar] [CrossRef]
- Sathish, D.; Kamath, S.; Prasad, K.; Kadavigere, R.; Martis, R.J. Asymmetry analysis of breast thermograms using automated segmentation and texture features. Signal Image Video Process. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Lopez, M.B.; del-Blanco, C.R.; Garcia, N. Detecting exercise-induced fatigue using thermal imaging and deep learning. In Proceedings of the IEEE Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6. [Google Scholar]
- Araújo, A.D.S.; Conci, A.; Resmini, R.; Montenegro, A.; Araujo, C.; Lebon, F. Computer Aided Diagnosis for Breast Diseases Based on Infrared Images. In Proceedings of the IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 172–177. [Google Scholar]
- Procházka, A.; Charvátová, H.; Vyšata, O.; Kopal, J.; Chambers, J. Breathing analysis using thermal and depth imaging camera video records. Sensors 2017, 17, 1408. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Ng, E.Y.; Tan, J.H.; Heng, M.L.; Tong, J.W.; Acharya, U.R. Computer aided diagnosis of diabetic foot using infrared thermography: A review. Comput. Biol. Med. 2017, 91, 326–336. [Google Scholar] [CrossRef]
- Umapathy, S.; Vasu, S.; Gupta, N. Computer aided diagnosis based hand thermal image analysis: A potential tool for the evaluation of rheumatoid arthritis. J. Med. Biol. Eng. 2018, 38, 666–677. [Google Scholar] [CrossRef]
- Santana, M.A.D.; Pereira, J.M.S.; Silva, F.L.D.; Lima, N.M.D.; Sousa, F.N.D.; Arruda, G.M.S.D.; Lima, R.C.F.; Silva, W.W.A.; Santos, W.P.D. Breast cancer diagnosis based on mammary thermography and extreme learning machines. Res. Biomed. Eng. 2018, 34, 45–53. [Google Scholar] [CrossRef]
- Thiruvengadam, J.; Mariamichael, A. A preliminary study for the assessment of hypertension using static and dynamic IR thermograms. Biomed. Eng./Biomed. Tech. 2018, 63, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, B.; Chen, H.; Ji, Q. Thermal augmented expression recognition. IEEE Trans. Cybern. 2018, 48, 2203–2214. [Google Scholar] [CrossRef]
- Gogoi, U.R.; Bhowmik, M.K.; Bhattacharjee, D.; Ghosh, A.K. Singular value based characterization and analysis of thermal patches for early breast abnormality detection. Australas. Phys. Eng. Sci. Med. 2018, 41, 861–879. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, M.A.; Ramirez-GarciaLuna, J.L.; Kolosovas-Machuca, E.S.; Drager, J.; González, F.J. Development and validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: Prospective cohort study. PLoS ONE 2018, 13, e0206477. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Ng, E.Y.; Oh, S.L.; Heng, M.L.; Hagiwara, Y.; Tan, J.H.; Tong, J.W.K.; Acharya, U.R. Automated detection of diabetic foot with and without neuropathy using double density-dual tree-complex wavelet transform on foot thermograms. Infrared Phys. Technol. 2018, 92, 270–279. [Google Scholar] [CrossRef]
- Samant, P.; Agarwal, R. Machine learning techniques for medical diagnosis of diabetes using iris images. Comput. Methods Programs Biomed. 2018, 157, 121–128. [Google Scholar] [CrossRef]
- Magalhaes, C.; Vardasca, R.; Mendes, J. Classifying Skin Neoplasms with Infrared Thermal Images. In Proceedings of the 14th Quantitative InfraRed Thermography Conference (QIRT 2018), Berlin, Germany, 25–29 June 2018. [Google Scholar]
- Vardasca, R.; Vaz, L.; Magalhaes, C.; Seixas, A.; Mendes, J. Towards the diabetic foot ulcers classification with infrared thermal images. In Proceedings of the 14th Quantitative InfraRed Thermography Conference (QIRT 2018), Berlin, Germany, 25–29 June 2018. [Google Scholar]
- Gogoi, U.R.; Majumdar, G.; Bhowmik, M.K.; Ghosh, A.K. Evaluating the efficiency of infrared breast thermography for early breast cancer risk prediction in asymptomatic population. Infrared Phys. Technol. 2019, 99, 201–211. [Google Scholar] [CrossRef]
- Bandalakunta Gururajarao, S.; Venkatappa, U.; Shivaram, J.M.; Sikkandar, M.Y.; Al Amoudi, A. Infrared Thermography and Soft Computing for Diabetic Foot Assessment. Mach. Learn. Bio-Signal Anal. Diagn. Imaging 2019, 73–97. [Google Scholar] [CrossRef]
- Jayanthi, T.; Anburajan, M. Model-based computer-aided method for diagnosis of cardiovascular disease using IR thermogram. Biomed. Res. 2019, 30. [Google Scholar] [CrossRef]
- Nagori, A.; Dhingra, L.S.; Bhatnagar, A.; Lodha, R.; Sethi, T. Predicting hemodynamic shock from thermal images using machine learning. Sci. Rep. 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Julier, S.J.; Bianchi-Berthouze, N. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging. JMIR Ment. Health 2019, 6, e10140. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, C.; Mendes, J.; Filipe, R.V.; Vardasca, R. Skin neoplasms dynamic thermal assessment. In Proceedings of the IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, Portugal, 22–23 February 2019; pp. 1–4. [Google Scholar]
- Magalhaes, C.; Vardasca, R.; Rebelo, M.; Valenca-Filipe, R.; Ribeiro, M.; Mendes, J. Distinguishing melanocytic nevi from melanomas using static and dynamic infrared thermal imaging. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Vardasca, R.; Magalhaes, C.; Seixas, A.; Carvalho, R.; Mendes, J. Diabetic foot monitoring using dynamic thermography and AI classifiers. In Proceedings of the 3rd Quantitative InfraRed Thermography Asia Conference (QIRT Asia 2019), Tokyo, Japan, 1–5 July 2019. [Google Scholar]
- Gourd, E. Thermography should not be used in breast cancer screening. Lancet Oncol. 2017, 18, e713. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardasca, R.; Magalhaes, C.; Mendes, J. Biomedical Applications of Infrared Thermal Imaging: Current State of Machine Learning Classification. Proceedings 2019, 27, 46. https://doi.org/10.3390/proceedings2019027046
Vardasca R, Magalhaes C, Mendes J. Biomedical Applications of Infrared Thermal Imaging: Current State of Machine Learning Classification. Proceedings. 2019; 27(1):46. https://doi.org/10.3390/proceedings2019027046
Chicago/Turabian StyleVardasca, Ricardo, Carolina Magalhaes, and Joaquim Mendes. 2019. "Biomedical Applications of Infrared Thermal Imaging: Current State of Machine Learning Classification" Proceedings 27, no. 1: 46. https://doi.org/10.3390/proceedings2019027046
APA StyleVardasca, R., Magalhaes, C., & Mendes, J. (2019). Biomedical Applications of Infrared Thermal Imaging: Current State of Machine Learning Classification. Proceedings, 27(1), 46. https://doi.org/10.3390/proceedings2019027046