Acoustic Location of Bragg Peak for Hadrontherapy Monitoring †
Abstract
:1. Introduction
2. Overview of Approach
3. Studies and Results
3.1. Numerical Simulation
3.2. Experimental Localization with Armonic Signals
3.3. Experimental Localization with Thermoacoustic Signals
4. Conclusions
Conflicts of Interest
References
- Kundu, T. Acoustic source localization. Ultrasonics 2014, 54, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Leonard, J.; Rus, D.; Teller, S. Robust distributed network localization with noisy range measurements. In Proceedings of the 2nd international conference on Enbedded networked sensor systems, Baltimore, MD, USA, 3–5 November 2004. [Google Scholar]
- Niculescu, D.S. Ad Hoc Positioning System (APS). In Proceedings of the Global Telecommunications Conference, San Antonio, TX, USA, 25–29 November 2001. [Google Scholar]
- Bortfeld, T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med. Phys. 1998, 24, 2024–2033. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, F.; Gunnarsson, F. Positioning using time-difference of arrival measurements. In Proceedings of the International conference on Acoustic, Speech and Signal Processing, Hong Kong, China, 6–10 April 2003. [Google Scholar]
- Ahmad, M.; Xiang, L.; Yousefi, S.; Xing, L. Theorical detection threshold of the proton-acoustic range verification technique. Med. Phys. 2015, 42, 5735–5744. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEE Tran. Acoust. Speech Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef]
- Felis, I. Tecnologías Acústicas para la Detección de Materia Oscura. Diseño y desarrollo de un detector Geyser. Ph.D. Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2017. [Google Scholar]
- Assmann, W.; Kellnberger, S.; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P.G.; Moser, M.; Dollinger, G.; Omar, M.; Ntziachristos, V.; et al. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Med. Phys. 2015, 42, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.C.; Segnal, C.M.; Avery, S. How proton pulse characteristics influence protoacoustic determination of proton-beam range: Simulation studies. Phys. Med. Biol. 2016, 61, 2213–2242. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.C.; Witztum, A.; Sehgal, C.M.; Avery, S. Proton beam characterization by proton-induced acoustic emission: Simulation studies. Phys. Med. Biol. 2014, 59, 6549–6563. [Google Scholar] [CrossRef] [PubMed]
Axis | Sensors | Source (mm) | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | |
X | H/2 | 0.0 | H/2 | H | 150 | 100 | 80 |
Y | 0.0 | H/2 | H | H/2 | 150 | 180 | 100 |
Z | 3H/4 | H/2 | H/2 | H/4 | 150 | 150 | 180 |
Real Position (mm) | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
X | 100 | 100.10 ± 0.11 | 100.10 ± 0.10 | 100.10 ± 0.10 | 94.00 ± 0.42 | 100.0 ± 0.01 |
Y | 100 | 100.10 ± 0.10 | 98.00 ± 0.14 | 100.10 ± 0.11 | 96.00 ± 0.28 | 100.0 ± 0.01 |
Z | 100 | 100.10 ± 0.10 | 96.00 ± 0.28 | 101.20 ± 0.14 | 94.00 ± 0.42 | 100.0 ± 0.01 |
X | 100 | 100.00 ± 0.01 | 100.0 ± 0.01 | 100.0 ± 0.01 | 100.0 ± 0.01 | 102.0 ± 1.4 |
Y | 180 | 100.20 ± 0.56 | 100.20 ± 0.56 | 181.2 ± 1.4 | 150 ± 21 | 163 ± 12 |
Z | 150 | 100.10 ± 0.32 | 100.1 ± 00.35 | 147.4 ± 1.8 | 146 ± 21 | 145.8 ± 3.0 |
X | 80 | 80.00 ± 0.01 | 78.0 ± 1.4 | 85.0 ± 4.5 | 71.0 ± 8.0 | 87.0 ± 4.9 |
Y | 100 | 100.00 ± 0.01 | 98.0 ± 2.2 | 106.0 ± 5.2 | 93.0 ± 6.4 | 105.0 ± 3.5 |
Z | 180 | 180.10 ± 0.10 | 178.0 ± 1.4 | 186.0 ± 5.3 | 168 ± 12 | 189.0 ± 6.4 |
Axis | Sensors (mm) | Source (mm) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | |
X | 600 | 500 | 400 | 500 | 410 | 450 |
Y | 550 | 450 | 540 | 650 | 450 | 540 |
Z | 380 | 280 | 340 | 340 | 350 | 330 |
Axis | Real Position (mm) | Sine 100kHz | Sine 150kHz | Sweep Signal |
---|---|---|---|---|
X | 450 | 459.0 ± 9.0 | 460.0 ± 9.3 | 460.0 ± 9.2 |
Y | 540 | 540.00 ± 0.72 | 540.00 ± 0.55 | 540.00 ± 0.43 |
Z | 330 | 340.0 ± 9.2 | 330.00 ± 0.18 | 330.00 ± 0.32 |
X | 410 | 401.0 ± 8.9 | 416.0 ± 5.7 | 418.0 ± 7.0 |
Y | 450 | 448.0 ± 1.3 | 450.00 ± 0.44 | 450.00 ± 0.56 |
Z | 350 | 352.0 ± 1.8 | 350.00 ± 0.36 | 350.00 ± 0.65 |
Axis | Real Position (mm) | Sine 100 kHz |
---|---|---|
X | 450 | 459.0 ± 8.8 |
Y | 540 | 540.00 ± 0.52 |
Z | 330 | 330.00 ± 0.12 |
X | 410 | 414.0 ± 3.3 |
Y | 450 | 450.00 ± 0.52 |
Z | 350 | 350.00 ± 0.49 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero, J.; Ardid, M.; Felis, I.; Herrero, A. Acoustic Location of Bragg Peak for Hadrontherapy Monitoring. Proceedings 2019, 4, 6. https://doi.org/10.3390/ecsa-5-05747
Otero J, Ardid M, Felis I, Herrero A. Acoustic Location of Bragg Peak for Hadrontherapy Monitoring. Proceedings. 2019; 4(1):6. https://doi.org/10.3390/ecsa-5-05747
Chicago/Turabian StyleOtero, Jorge, Miguel Ardid, Ivan Felis, and Alicia Herrero. 2019. "Acoustic Location of Bragg Peak for Hadrontherapy Monitoring" Proceedings 4, no. 1: 6. https://doi.org/10.3390/ecsa-5-05747