Highly Efficient Fruit Mass and Size Estimation Using Only Top View Images †
Abstract
:1. Introduction
2. Experiment Setup
3. Results
3.1. Volume Estimation Result
3.2. Mass Estimation Result
3.3. Computational Expense
4. Conclusions
References
- Global Fruit Production in 2017, by Variety (in illion metric tons)*. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 14 October 2019).
- Ahmad, S.; Thompson, A.K.; Hafiz, I.A.; ASI, A.S. Effect of temperature on the ripening behavior and quality of banana fruit. Int. J. Agric. Biol. 2001, 3, 224–227. [Google Scholar]
- Mendoza, F.; Aguilera, J.M. Application of image analysis for classification of ripening bananas. J. Food Sci. 2004, 69, 471–477. [Google Scholar] [CrossRef]
- Steffens, C.; Franceschi, E.; Corazza, F.; Herrmann, P.; Oliveira, J.V. Gas sensors development using supercritical fluid technology to detect the ripeness of bananas. J. Food Eng. 2010, 101, 365–369. [Google Scholar] [CrossRef]
- Xu, L.M.; Zhao, Y.C. Automated strawberry grading system based on image processing. Comput. Electron. Agric. 2010, 71, 32–39. [Google Scholar]
- Lorestani, A.N.; Tabatabaeefar, A. Modeling the mass of kiwi fruit by geometrical attributes. Int. Agrophys. 2006, 20, 135–139. [Google Scholar]
- Terdwongworakul, A.; Chaiyapong, S.; Jarimopas, B.; Meeklangsaen, W. Physical properties of fresh young Thai coconut for maturity sorting. Biosyst. Eng. 2009, 103, 208–216. [Google Scholar] [CrossRef]
- Emadi, B.; Abbaspour-Fard, M.H.; Yarlagadda, P.K. Mechanical Properties of Melon Measured by Compression, Shear, and Cutting Modes. Int. J. Food Prop. 2009, 12, 780–790. [Google Scholar] [CrossRef]
- Dang, N.; Vo, M.-T.; Nguyen, T.-D.; Dao, S. Analysis on Mangoes Weight Estimation Problem using Neural Network. In Proceedings of the 19th International Symposium on Communications and Information Technologies, Ho Chi Minh City, Vietnam, 25–27 September 2019. under processing. [Google Scholar]
- Dao, S.V. Multimodal Classification of Mangoes. Agric. Robots Fundam. Appl. 2019, 119–131. [Google Scholar] [CrossRef]
- Omid, M.; Khojastehnazhand, M.; Tabatabaeefar, A. Estimating volume and mass of citrus fruits by image processing technique. J. Food Eng. 2010, 100, 315–321. [Google Scholar] [CrossRef]
- Li, X.F.; Zhu, W.X. Apple grading method based on features fusion of size, shape, and color. Procedia Eng. 2011, 15, 2885–2891. [Google Scholar] [CrossRef]
- Soltani, M.; Alimardari, R.; Omid, M. Modeling the main physical properties of banana fruit based on geometrical attributes. Int. J. Multidiscip. Sci. Eng. 2011, 2, 1–6. [Google Scholar]
- Volume. Available online: https://www.grc.nasa.gov/WWW/K-12/rocket/volume.html (accessed on 14 October 2019).
- Dhameliya, S.; Kakadiya, J.; Savant, R. Volume Estimation of Mango. Int. J. Comput. Appl. 2016, 143, 11–16. [Google Scholar] [CrossRef]
- Huynh, T.; Nguyen, T.-D.; Vo, M.-T.; Dao, S. High Dynamic Range Imaging Using A 2x2 Camera Array with Polarizing Filters. In Proceedings of the 19th International Symposium on Communications and Information Technologies, Ho Chi Minh City, Vietnam, 25–27 September 2019. under processing. [Google Scholar]
- Pham, D.; Tong, T.; Nguyen, M.; Dao, S. Vision-based system for weighing, grading and sorting of mango. In Proceedings of the International Congress on Logistics and SCM Systems, Ho Chi Minh City, Vietnam, 29 July–1 August 2018; p. 62. [Google Scholar]
Number of Slice | 4 Slices | 8 Slices | 12 Slices | 16 Slices |
---|---|---|---|---|
Average errors of all 56 bananas (%) | 6.05 | 5.71 | 5.74 | 5.73 |
Max Processing Time for 56 pics (sec) | Min Processing Time for 56 pics (sec) | Average Processing Time for 1 pic (sec) |
---|---|---|
4.268451297 | 3.669792497 | 0.06–0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, T.; Dao, S. Highly Efficient Fruit Mass and Size Estimation Using Only Top View Images. Proceedings 2020, 42, 57. https://doi.org/10.3390/ecsa-6-06588
Huynh T, Dao S. Highly Efficient Fruit Mass and Size Estimation Using Only Top View Images. Proceedings. 2020; 42(1):57. https://doi.org/10.3390/ecsa-6-06588
Chicago/Turabian StyleHuynh, Tri, and Son Dao. 2020. "Highly Efficient Fruit Mass and Size Estimation Using Only Top View Images" Proceedings 42, no. 1: 57. https://doi.org/10.3390/ecsa-6-06588
APA StyleHuynh, T., & Dao, S. (2020). Highly Efficient Fruit Mass and Size Estimation Using Only Top View Images. Proceedings, 42(1), 57. https://doi.org/10.3390/ecsa-6-06588