Performance of Portfolios Based on the Expected Utility-Entropy Fund Rating Approach †
Abstract
:1. Introduction
2. Fund Ratings in US Mutual Funds Based on EU-E Decision Model
3. Performance of Portfolios Constructed Using EU-E Model and Morningstar Ratings
3.1. Portfolio Rebalancing Periods
3.2. Portfolio Performance Evaluation
3.3. Abnormal Returns of the Portfolios Based on EU-E Decision Model and Morningstar
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- French, K.R. Presidential address: The cost of active investing. J. Finan. 2008, 62, 1537–1573. [Google Scholar] [CrossRef]
- Wilcox, R.T. Bargain hunting or star gazing? Investors’ preferences for stock mutual funds. J. Bus. 2003, 76, 645–663. [Google Scholar] [CrossRef]
- Capon, N.; Fitzsimons, G.; Alan Prince, R. An individual level analysis of the mutual fund investment decision. J. Financ. Serv. Res. 1996, 10, 59–82. [Google Scholar] [CrossRef]
- Sirri, E.R.; Tufano, P. Costly search and mutual fund flows. J. Finan. 1998, 53, 1589–1622. [Google Scholar] [CrossRef]
- Sharpe, W.F. Morningstar’s risk-adjusted ratings. Financ. Anal. J. 1998, 54, 21–33. [Google Scholar] [CrossRef]
- Lisi, F.; Caporin, M. On the role of risk in the Morningstar rating for mutual funds. Quant. Financ. 2012, 12, 1477–1486. [Google Scholar] [CrossRef]
- Allais, M. Le comportement de l’Homme rationnel devant le risque: Critique des postulats et axiomes de l’ecole Americaine. Econometrica 1953, 21, 503–546. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Rabin, M. Risk aversion and expected-utility theory: A calibration theorem. Econometrica 2000, 68, 1281–1292. [Google Scholar] [CrossRef]
- Machina, M.J. “Expected utility” analysis without the independence axiom. Econometrica 1982, 50, 277–323. [Google Scholar] [CrossRef]
- Levy, H. Stochastic Dominance: Investment Decision-Making under Uncertainty, 1st ed.; Kluwer Academic Publishers: Boston, MA, USA, 1998. [Google Scholar]
- Sarin, R.K.; Weber, M. Risk-value models. Eur. J. Oper. Res. 1993, 70, 135–149. [Google Scholar] [CrossRef]
- Bell, D.E. Risk, return, and utility. Manag. Sci. 1995, 41, 23–30. [Google Scholar] [CrossRef]
- Levy, H. The definition of risk: An extension. J. Econ. Theory 1977, 14, 232–234. [Google Scholar] [CrossRef]
- Dyer, J.S.; Jia, J. Relative risk-value models. Eur. J. Oper. Res. 1997, 103, 170–185. [Google Scholar] [CrossRef]
- Jia, J.; Dyer, J.S.; Butler, J.C. Measures of perceived risk. Manag. Sci. 1999, 45, 519–532. [Google Scholar] [CrossRef]
- Marley, A.A.J.; Luce, R.D. Independence properties vis-à-vis several utility representations. Theory Decis. 2005, 58, 77–143. [Google Scholar] [CrossRef]
- Ng, C.T.; Luce, R.D.; Marley, A.A.J. On the utility of gambling: Extending the approach of Meginniss (1976). Aequ. Math. 2008, 76, 281–304. [Google Scholar] [CrossRef]
- Dionisio, A.; Reis, A.H.; Coelho, L. Utility function estimation: The entropy approach. Physica A 2008, 387, 3862–3867. [Google Scholar] [CrossRef]
- Luce, R.D.; Ng, C.T.; Marley, A.A.J.; Aczél, J. Utility of gambling I: Entropy modified linear weighted utility. Econ. Theory 2008, 36, 1–33. [Google Scholar] [CrossRef]
- Luce, R.D.; Ng, C.T.; Marley, A.A.J.; Aczél, J. Utility of gambling II: Risk, paradoxes, and data. Econ. Theory 2008, 36, 165–187. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, W. A measure of risk and a decision-making model based on expected utility and entropy. Eur. J. Oper. Res. 2005, 164, 792–799. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, W. Normalized expected utility-entropy measure of risk. Entropy 2014, 16, 3590–3604. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Ormos, M.; Zibriczky, D. Entropy-based financial asset pricing. PLoS ONE 2014, 9, e115742. [Google Scholar] [CrossRef] [PubMed]
- Bentes, S.R.; Menezes, R. Entropy: A new measure of stock market volatility? J. Phys. Conf. Ser. 2012, 394. [Google Scholar] [CrossRef]
- Caraiani, P. The predictive power of singular value decomposition entropy for stock market dynamics. Physica A 2014, 393, 571–578. [Google Scholar] [CrossRef]
- Wei, C.P.; Yan, F.F.; Rodríguez, R.M. Entropy measures for hesitant fuzzy sets and their application in multi-criteria decision-making. J. Intell. Fuzzy Syst. 2016, 31, 673–685. [Google Scholar] [CrossRef]
- Wei, C.P.; Rodríguez, R.M.; Martínez, L. Uncertainty measures of extended hesitant fuzzy linguistic term sets. IEEE Trans. Fuzzy Syst. 2018, 26, 1763–1768. [Google Scholar] [CrossRef]
- Shefrin, H.; Statman, M. The disposition to sell winners too early and ride losers too long: Theory and evidence. J. Finan. 1985, 40, 777–790. [Google Scholar] [CrossRef]
- Dong, X.; Lu, H.; Xia, Y.; Xiong, Z. Decision-making model under risk assessment based on entropy. Entropy 2016, 18, 404. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Z.; Lu, H. Risk assessment and decision-making under uncertainty in tunnel and underground engineering. Entropy 2017, 19, 549. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Z.; Wen, Z.; Lu, H.; Dong, X. Entropy-based risk control of geological disasters in mountain tunnels under uncertain environments. Entropy 2018, 20, 503. [Google Scholar] [CrossRef] [PubMed]
- Casquilho, J.P.; Rego, F.C. Discussing landscape compositional scenarios generated with maximization of non-expected utility decision models based on weighted entropies. Entropy 2017, 19, 66. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Galstyan, A.; Abbas, A.E.; Struzik, Z.R. Adaptive decision making via entropy minimization. Int. J. Approx. Reason. 2018, 103, 270–287. [Google Scholar] [CrossRef]
- Gao, B.; Wu, C.; Wu, Y.; Tang, Y. Expected utility and entropy-based decision-making model for large consumers in the smart grid. Entropy 2015, 17, 6560–6575. [Google Scholar] [CrossRef]
- Montesarchio, V.; Ridolfi, E.; Russo, F.; Napolitano, F. Rainfall threshold definition using an entropy decision approach and radar data. Nat. Hazards Earth Syst. Sci. 2011, 11, 2061–2074. [Google Scholar] [CrossRef]
- Yang, J.; Feng, Y.; Qiu, W. Stock selection for portfolios using expected utility-entropy decision model. Entropy 2017, 19, 508. [Google Scholar] [CrossRef]
- Chiew, D.; Qiu, J.; Treepongkaruna, S.; Yang, J.; Shi, C. The predictive ability of the expected utility-entropy based fund rating approach: A comparison investigation with Morningstar ratings in US. PLoS ONE 2019, 14, e0215320. [Google Scholar] [CrossRef] [PubMed]
- The Morningstar Rating for Funds. Available online: https://www.morningstar.com/content/dam/marketing/shared/research/methodology/771945_Morningstar_Rating_for_Funds_Methodology.pdf (accessed on 9 October 2019).
- Alexeev, V.; Dungey, M. Equity portfolio diversification with high frequency data. Quant. Financ. 2015, 15, 1205–1215. [Google Scholar] [CrossRef]
- Loviscek, A.L.; Jordan, W.J. Stock selection based on Morningstar’s ten-year, five-star general equity mutual funds. Finan. Serv. Rev. 2000, 9, 145–157. [Google Scholar] [CrossRef]
N | Mean | S.D. | Skewness | Kurtosis | Min. | Med. | Max. | Jacque-Bera |
---|---|---|---|---|---|---|---|---|
336,804 | 0.59 | 3.61 | −0.67 | 11.15 | −46.20 | 0.58 | 34.09 | 956,805.55 |
Mean | Std. Dev. | Min. | Max. | Significant Outperformance (%) | Significant Underperformance (%) | N | |
---|---|---|---|---|---|---|---|
Panel A: 12-Month Rebalancing Interval | |||||||
EU-E (λ = 0.25) | 0.54 | 0.55 | −2.18 | 2.44 | 68.31 | 7.00 | 1300 |
EU-E (λ = 0.75) | 0.21 | 0.48 | −1.79 | 2.31 | 29.77 | 8.77 | 1300 |
Morningstar | 0.06 | 0.62 | −1.55 | 2.32 | 17.62 | 21.08 | 1300 |
Panel B: 18-Month Rebalancing Interval | |||||||
EU-E (λ = 0.25) | 0.46 | 0.54 | −1.19 | 2.42 | 56.89 | 5.44 | 900 |
EU-E (λ = 0.75) | 0.18 | 0.45 | −1.44 | 1.96 | 32.11 | 10.00 | 900 |
Morningstar | −0.01 | 0.59 | −1.15 | 1.79 | 10.67 | 21.44 | 900 |
Panel C: 36-Month Rebalancing Interval | |||||||
EU-E (λ = 0.25) | 0.52 | 0.54 | −1.22 | 2.29 | 56.40 | 4.40 | 500 |
EU-E (λ = 0.75) | 0.26 | 0.45 | −0.81 | 1.66 | 34.80 | 7.00 | 500 |
Morningstar | −0.06 | 0.41 | −1.21 | 1.12 | 4.40 | 17.60 | 500 |
Panel D: 60-Month Rebalancing Interval | |||||||
EU-E (λ = 0.25) | 0.48 | 0.47 | −1.14 | 1.65 | 71.00 | 3.67 | 300 |
EU-E (λ = 0.75) | 0.20 | 0.37 | −0.75 | 1.31 | 25.33 | 8.33 | 300 |
Morningstar | −0.09 | 0.46 | −0.98 | 1.25 | 5.67 | 30.33 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiew, D.; Qiu, J.; Treepongkaruna, S.; Yang, J.; Shi, C. Performance of Portfolios Based on the Expected Utility-Entropy Fund Rating Approach. Proceedings 2020, 46, 15. https://doi.org/10.3390/ecea-5-06679
Chiew D, Qiu J, Treepongkaruna S, Yang J, Shi C. Performance of Portfolios Based on the Expected Utility-Entropy Fund Rating Approach. Proceedings. 2020; 46(1):15. https://doi.org/10.3390/ecea-5-06679
Chicago/Turabian StyleChiew, Daniel, Judy Qiu, Sirimon Treepongkaruna, Jiping Yang, and Chenxiao Shi. 2020. "Performance of Portfolios Based on the Expected Utility-Entropy Fund Rating Approach" Proceedings 46, no. 1: 15. https://doi.org/10.3390/ecea-5-06679
APA StyleChiew, D., Qiu, J., Treepongkaruna, S., Yang, J., & Shi, C. (2020). Performance of Portfolios Based on the Expected Utility-Entropy Fund Rating Approach. Proceedings, 46(1), 15. https://doi.org/10.3390/ecea-5-06679