Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change †
Abstract
:1. Introduction
2. Methodology
- The design storm is considered static for the entire network.
- The mathematical simulation model SWMM [15] is used as a network analysis tool. Dynamic wave analysis using the complete Saint-Venant equations is used.
- The mathematical model of the network must be calibrated and simplified without this decreasing the reliability in the results.
- The actions that will be taken are the renewal of pipes with others of greater diameter, the installation of STs and the installation of hydraulic controls. Changes in the morphology of the network are out of this work.
- The STs are considered installed on-line. The invert elevation is also considered the same of the existing manhole.
- The optimization problem is analyzed in terms of costs. The cost function must be established based on the hydraulic variables and includes the cost of pipe renewal, the cost of installation of ST and the cost of damage caused by flooding.
- The flood damage cost function does not consider intangible damage.
2.1. Decision Variables
2.2. Objective Function
2.2.1. Pipe Replacement Cost Functions
2.2.2. Storm Tank Installation Cost Functions
2.2.3. Flood Damage Cost functions
3. Case Study
4. Results
5. Conclusions
- The combined use of replacement pipes, the installation of pipes and hydraulic controls is an appropriate methodology for optimizing drainage networks that require rehabilitation. The use of multi-objective evolutionary algorithms proves to be valid for this type of analysis.
- The main conclusion of this work is that the use of CH significantly decreases the cost of the intervention in the drainage network because it retains the water upstream using the volume of the network to momentarily store the water, making the system more efficient and avoiding accumulation downstream, avoiding flooding.
Author Contributions
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
AR5 | Fifth Assessment Report |
ICCP | Intergovernmental Panel on Climate Change |
ST | Storm Tank |
DV | Decision variable |
HC | Hydraulic control |
IDF | Intensity, Duration, Frequency |
NSGA | Non-dominated sorting genetic algorithm |
SWMM | Storm Water Management Model |
References
- Curtis, D.C.; McCuen, R.H. Design efficiencies of stormwater detention basins. J. Water Resour. Plan. Manag. Div ASCE 1977, 103, 125–140. [Google Scholar] [CrossRef]
- Goulter, I.C.; Morgan, D.R. Model for optimal size and location of detention. J. Water Resour. Plan. Manag. 1984, 110, 119–122. [Google Scholar] [CrossRef]
- Bennett, M.S.; Mays, L.W. Optimal design of detention and drainage channel systems. J. Water Resour. Plan. Manag. 1995, 111, 99–112. [Google Scholar] [CrossRef]
- Kessler, A.; Diskin, M.H. The efficiency function of detention reservoirs in urban drainage systems. Water Resour. Res. 1991, 27, 253–258. [Google Scholar] [CrossRef]
- Woods, B.B.; Kellagher, R.; Martin, P.; Jefferies, C.; Bray, R.; Shaffer, P. The SUDS Manual (C697); CIRIA: London, UK, 2007; p. 600. [Google Scholar]
- Todeschini, S.; Papiri, S.; Ciaponi, C. Performance of stormwater detention tanks for urban drainage systems in northern Italy. J. Environ. Manag. 2012, 101, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Doménech, I.; Montanari, A.; Marco, J.B. Efficiency of storm detention tanks for urban drainage systems under climate variability. J. Water Resour. Plan. Manag. 2012, 138, 36–46. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Sweetapple, C. Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach. J. Environ. Manag. 2017, 204, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.C.; Zeferino, J.A.; Simões, N.E.; Santos, G.L.; Saldarriaga, J.G. A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. Int. J. Sustain. Dev. Plan. 2017, 12, 122–132. [Google Scholar] [CrossRef]
- Dziopak, J. A wastewater retention canal as a sewage network and accumulation reservoir. In Proceedings of the E3S Web of Conferences, Polanica-Zdrój, Poland, 16–18 April 2018; Volume 45, p. 00016. [Google Scholar]
- Leitão, J.P.; Carbajal, J.P.; Rieckermann, J.; Simões, N.E.; Marques, A.S.; de Sousa, L.M. Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage. J. Hydrol. 2018, 556, 371–383. [Google Scholar] [CrossRef]
- Ngamalieu-Nengoue, U.A.; Iglesias-Rey, P.L.; Martínez-Solano, F.J.; Mora-Meliá, D.; Valderrama, J.G.S. Urban drainage network rehabilitation considering storm tank installation and pipe substitution. Water (Switzerland) 2019, 11, 515. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Saldarriaga, J.G.; Vallejo, D. Creation of an SWMM toolkit for its application in urban drainage networks optimization. Water (Switzerland) 2016, 8, 259. [Google Scholar] [CrossRef]
- Rossman, L.A. “Storm Water Management Model User’s Manual.” Version 5.0; Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2010. [Google Scholar]
- Cunha, M.C.; Zeferino, J.A.; Simões, N.E.; Saldarriaga, J.G. Optimal location and sizing of storage units in a drainage system. Environ. Model. Softw. 2016, 83, 155–166. [Google Scholar] [CrossRef]
- Ngamalieu-Nengoue, U.A.; Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Mora-Meliá, D. Multi-objective optimization for urban drainage or sewer networks rehabilitation through pipes substitution and storage tanks installation. Water (Switzerland) 2019, 11, 935. [Google Scholar] [CrossRef]
- Iglesias-Rey, P.L.; Martínez-Solano, F.J.; Saldarriaga, J.G.; Navarro-Planas, V.R. Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Eng. 2017, 186, 617–625. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, J.H. Development of resilience index based on flooding damage in urban areas. Water (Switzerland) 2017, 9, 69. [Google Scholar] [CrossRef]
- Gulizia, C.; Camilloni, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol. 2015, 35, 583–595. [Google Scholar] [CrossRef]
Node | Flood Volume (m3) | Flood Area (m2) | ymax (m) | Cost (€) |
---|---|---|---|---|
N02 | 123.56 | 1240 | 0.1 | 135,857.00 € |
N04 | 132.56 | 930 | 0.413 | 181,375.00 € |
N06 | 501.79 | 1890 | 0.265 | 875,502.00 € |
N07 | 23.95 | 1250 | 0.019 | 6644.00 € |
N09 | 1.82 | 1130 | 0.002 | 45.00 € |
N10 | 385.12 | 700 | 0.55 | 646,838.00 € |
N11 | 25.83 | 820 | 0.032 | 11,288.00 € |
N23 | 949.54 | 450 | 2.11 | 569,922.00 € |
N32 | 36.65 | 1500 | 0.024 | 12,727.00 € |
N33 | 469.82 | 3030 | 0.155 | 671,908.00 € |
N34 | 1181.87 | 3270 | 0.361 | 2,131,929.00 € |
TOTAL | 5,244,035.00 € |
Scenario | Objective Function | Term in Objetive Function | NO Elementos in the Solution | ||||
---|---|---|---|---|---|---|---|
Floods | STs | Pipes | STs | Pipes | HC | ||
[12] | 213,981.00 € | 12,701.00 € | 186,353.00 € | 14,927.00 € | 3 | 3 | 0 |
Proposed | 209,150.40 € | 9061.91 € | 188,957.79 € | 11,130.70 € | 3 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayas-Jiménez, L.; Iglesias-Rey, P.L.; Martínez-Solano, F.J. Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change. Proceedings 2020, 48, 27. https://doi.org/10.3390/ECWS-4-06451
Bayas-Jiménez L, Iglesias-Rey PL, Martínez-Solano FJ. Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change. Proceedings. 2020; 48(1):27. https://doi.org/10.3390/ECWS-4-06451
Chicago/Turabian StyleBayas-Jiménez, Leonardo, Pedro L. Iglesias-Rey, and F. Javier Martínez-Solano. 2020. "Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change" Proceedings 48, no. 1: 27. https://doi.org/10.3390/ECWS-4-06451
APA StyleBayas-Jiménez, L., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2020). Multi-Objective Optimization of Drainage Networks for Flood Control in Urban Area Due to Climate Change. Proceedings, 48(1), 27. https://doi.org/10.3390/ECWS-4-06451