Electronic Health Records Exploitation Using Artificial Intelligence Techniques †
Abstract
:1. Introduction
2. Data Set Description
3. Present Work
Author Contributions
Funding
Conflicts of Interest
References
- Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Predicting healthcare trajectories from medical records: A deep learning approach. J. Biomed. Inform. 2017, 69, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Steinbach, M.; Kumar, V.; Simon, G. Mining Electronic Health Records (EHRs): A Survey. ACM Comput. Surv. 2018, 50, 85:1–85:40. [Google Scholar] [CrossRef]
- Martínez-Romero, M.; Vázquez-Naya, J.M.; Pereira, J.; Pereira, M.; Pazos, A.; Baños, G. The iOSC3 system: Using ontologies and SWRL rules for intelligent supervision and care of patients with acute cardiac disorders. Comput. Math. Methods. Med. 2013. [Google Scholar] [CrossRef] [PubMed]
- Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J. Biomed. Health Inform. 2018, 22, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Marier, A.; Olsho, L.E.W.; Rhodes, W.; Spector, W.D. Improving prediction of fall risk among nursing home residents using electronic medical records. J. Am. Med. Inform. Assoc. 2016, 23, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Panahiazar, M.; Taslimitehrani, V.; Pereira, N.; Pathak, J. Using EHRs and Machine Learning for Heart Failure Survival Analysis. Stud. Health Technol. Inform. 2015, 216, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Dongyuan, T.; Weitong, C.; Xuming, H.; Minghao, Y. Deep learning for heterogeneous medical data analysis. World Wide Web 2020, 1–23. [Google Scholar] [CrossRef]
- Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci. Rep. 2016, 6, 26094. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.F.; Reps, J.; Kai, J.; Garibaldi, J.M.; Qureshi, N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 2017, 12, e0174944. [Google Scholar] [CrossRef]
- Kawaler, E.; Cobian, A.; Pessig, P.; Cross, D.; Yale, S.; Craven, M. Learning to Predict Post-Hospitalization VTE Risk from EHR Data. In Proceedings of the 12th AMIA Annual Symposium, Chicago, Illinois, USA, 3–7 November 2012; pp. 436–445. [Google Scholar]
- Wong, N.C.; Lam, C.; Patterson, L.; Shayegan, B. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. BJU Int. 2019, 123, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
Records | Patients | Diagnoses | Procedures | |
---|---|---|---|---|
ICD-9 | 156,362 | 89,211 | 4147 | 1581 |
ICD-10 | 32,069 | 25,013 | 2691 | 2555 |
Records | Patients | Relapses | |
---|---|---|---|
Dorsopathies | 10,177 | 8228 | 1250 |
Varicose veins | 9700 | 7981 | 1568 |
Arthropathies | 9437 | 8137 | 1116 |
Respiratory infections | 7722 | 4349 | 1466 |
Rheumatism | 6601 | 5943 | 534 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra Tort, C.; Aguiar Pulido, V.; Suárez Ulloa, V.; Docampo Boedo, F.; López Gestal, J. M.; Pereira Loureiro, J. Electronic Health Records Exploitation Using Artificial Intelligence Techniques. Proceedings 2020, 54, 60. https://doi.org/10.3390/proceedings2020054060
Guerra Tort C, Aguiar Pulido V, Suárez Ulloa V, Docampo Boedo F, López Gestal JM, Pereira Loureiro J. Electronic Health Records Exploitation Using Artificial Intelligence Techniques. Proceedings. 2020; 54(1):60. https://doi.org/10.3390/proceedings2020054060
Chicago/Turabian StyleGuerra Tort, Carla, Vanessa Aguiar Pulido, Victoria Suárez Ulloa, Francisco Docampo Boedo, José Manuel López Gestal, and Javier Pereira Loureiro. 2020. "Electronic Health Records Exploitation Using Artificial Intelligence Techniques" Proceedings 54, no. 1: 60. https://doi.org/10.3390/proceedings2020054060
APA StyleGuerra Tort, C., Aguiar Pulido, V., Suárez Ulloa, V., Docampo Boedo, F., López Gestal, J. M., & Pereira Loureiro, J. (2020). Electronic Health Records Exploitation Using Artificial Intelligence Techniques. Proceedings, 54(1), 60. https://doi.org/10.3390/proceedings2020054060