Tailoring the Electrochemical and Morphological Properties of Electropolymerized and Dropcast Reduced Graphene Oxide-Poly(3,4-ethylene dioxythiophene):polystyrenesulfonate Transducers for Ion-Selective Sensors †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrument
2.2. Fabrication of Drop-Cast and Electropolymerized rGO:PSS-PEDOT:PSS/SPCEs
2.3. Cyclic Voltammetry of rGO:PSS-PEDOT:PSS/SPCEs
2.4. Scanning Electron Microscopy (SEM) of rGO:PSS-PEDOT:PSS/SPCEs
3. Results
3.1. Cyclic Voltammetry of rGO:PSS-PEDOT:PSS/SPCEs
3.2. Surface Morphology of rGO:PSS-PEDOT:PSS/SPCEs
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef]
- Bakker, E. Ion-selective electrodes, Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier Ltd.: Radarweg, Amsterdam, The Netherlands, 2019; pp. 231–251. [Google Scholar]
- Urbanowicz, M.; Jasiński, A.; Jasińska, M.; Drucis, K.; Ekman, M.; Szarmach, A.; Bocheńska, M. Simultaneous determination of Na+, K+, Ca2+, Mg2+, and Cl− in unstimulated and stimulated human saliva using all solid state multisensor platform. Electroanalysis 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Piek, M.; Wojciechowska, A.; Fendrych, K.; Piech, R.; Paczosa-bator, B. A simple way to modify selectivity of sodium sensitive electrodes by using organic conductive crystals. Ionics (Kiel) 2018, 25, 2311–2321. [Google Scholar] [CrossRef]
- Tahirbegi, I.B.; Alvira, M.; Mir, M.; Samitier, J. Simple and fast method for fabrication of endoscopic implantable sensor arrays. Sensors 2014, 14, 11416. [Google Scholar] [CrossRef] [PubMed]
- Catrall, R.W.; Freiser, H. Coated wire ion selective electrodes. Anal. Chem. 1971, 43, 1905–1906. [Google Scholar] [CrossRef]
- De Marco, R.; Veder, J.P.; Clarke, G.; Nelson, A.; Prince, K.; Pretsch, E.; Bakker, E. Evidence of a water layer in solid-contact polymeric ion sensors. Phys. Chem. Chem. Phys. 2008, 10, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, T.; Xu, Z.; Hughes, E.; Qian, F.; Lee, M.; Li, B. Real-time in situ monitoring of nitrogen dynamics in wastewater treatment processes using wireless, solid-state, and ion-selective membrane sensors. Environ. Sci. Technol. 2019, 53, 3140–3148. [Google Scholar] [CrossRef]
- Choosang, J.; Numnuam, A.; Thavarungkul, P.; Kanatharana, P.; Radu, T.; Ullah, S.; Radu, A. Simultaneous detection of ammonium and nitrate in environmental samples using on ion-selective electrode and comparison with portable colorimetric assays. Sensors 2018, 18, 3555. [Google Scholar] [CrossRef]
- Athavale, R.; Dinkel, C.; Wehrli, B.; Bakker, E.; Crespo, G.A.; Brand, A. Robust solid-contact ion selective electrodes for high-resolution in situ measurements in fresh water systems. Environ. Sci. Technol. Lett. 2017, 4, 286–291. [Google Scholar] [CrossRef]
- Cánovas, R.; Sánchez, S.P.; Parrilla, M.; Cuartero, M.; Crespo, G.A. Cytotoxicity study of ionophore-based membranes: Toward on-body and in vivo ion sensing. ACS Sensors 2019, 4, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, F.; Wang, Y.; Pan, L.; Lin, P.; Zhang, B.; Fei, F. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat. Nanotechnol. 2020, 15, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.A.; Melik, R.; Rabie, A.N.; Ibrahim, A.M.; Moses, D.; Tan, A.; Lin, S.J. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nat. Mater. 2011, 10, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jiang, Y.; Wei, H.; Jiang, Y.; Ma, W.; Zheng, W.; Mao, L. In vivo measurement of calcium ion with solid-state ion-selective electrode by using shelled hollow carbon nanospheres as transducing layer. Anal. Chem. 2019, 91, 4421–4428. [Google Scholar] [CrossRef]
- Sundramoorthy, A.K.; Premkumar, B.S.; Gunasekaran, S. Reduced graphene oxide-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate based dual-selective sensor for iron in different oxidation states. ACS Sensors 2016, 1, 151–157. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Mendecki, L.; Mirica, K.A. Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl. Mater. Interfaces 2018, 10, 19248–19257. [Google Scholar] [CrossRef]
- Criscuolo, F.; Taurino, I.; Stradolini, F.; Carrara, S.; de Micheli, G. Highly-stable Li+ion-selective electrodes based on noble metal nanostructured layers as solid-contacts. Anal. Chim. Acta 2018, 1027, 22–32. [Google Scholar] [CrossRef]
- Pirovano, P.; Dorrian, M.; Shinde, A.; Donohoe, A.; Brady, A.J.; Moyna, N.M.; McCaul, M. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020, 219, 121145. [Google Scholar] [CrossRef]
- Abd-wahab, F.; Farhana, H.; Guthoos, A.; Salim, W.W.A. Solid-state characterization of rGO-PEDOT:PSS transducing material for enzymatic sensing. Biosensors 2019, 9, 36. [Google Scholar] [CrossRef]
- Salim, W.W.A.W.; Zeitchek, M.A.; Hermann, A.C.; Ricco, A.J.; Tan, M.; Selch, F.; Porterfield, D.M. Multi-analyte biochip (MAB) based on all-solid-state ion-selective electrodes (ASSISE) for physiological research. J. Vis. Exp. 2013, 74, 50020. [Google Scholar]
- Han, T.; Mattinen, U.; Bobacka, J. Improving the sensitivity of solid-contact ion-selective electrodes by using coulometric signal transduction. ACS Sensors 2019, 4, 900–906. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Das, S.R.; Garland, N.T.; Jing, D.; Hondred, J.A.; Cargill, A.A.; Claussen, J.C. Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing. ACS Appl. Mater. Interfaces 2017, 9, 12719–12727. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yu, W.; Waimin, J.F.; Glassmaker, N.; Raghunathan, N.; Jiang, X.; Rahimi, R. Inkjet-printed solid-state potentiometric nitrate ion selective electrodes for agricultural application. IEEE Sens. 2019, 1–4. [Google Scholar] [CrossRef]
- Pol, R.; Moya, A.; Gabriel, G.; Gabriel, D.; Céspedes, F.; Baeza, M. Inkjet-printed sulfide-selective electrode. Anal. Chem. 2017, 89, 12231–12236. [Google Scholar] [CrossRef]
- Benoudjit, A.; Shohibuddin, I.U.S.; Salim, W.W.A.W. Comparative study of cyclic voltammetry and cycle stability of electropolymerized poly(3,4-ethylenedioxythiophene):poly(sodium 4-styrenesulfonate) on screen-printed electrodes in aqueous media. TEST Eng. Manag. 2020, 83, 1033–1040. [Google Scholar]
- Lindfors, T.; Boeva, Z.A.; Latonen, R.M. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxide. RSC Adv. 2014, 4, 25279–25286. [Google Scholar] [CrossRef]
- Yang, T.; Yin, H.; Gao, L.H.; Wang, K.Z.; Yan, D. Recent advances in electrodes modified with ruthenium complexes for electrochemical and photoelectrochemical water oxidation. In Advances in Inorganic Chemistry, 1st ed.; van Eldik, R., Hubbard, C., Eds.; Academic Press: Hampshire Street, MA, USA, 2019; Volume 74, pp. 305–341. [Google Scholar]
- Yang, X.; Kirsch, J.; Olsen, E.V.; Fergus, J.W.; Simonian, A.L. Anti-fouling PEDOT:PSS modification on glassy carbon electrodes for continuous monitoring of tricresyl phosphate. Sens. Actuators B Chem. 2013, 177, 659–667. [Google Scholar] [CrossRef]
- Benoudjit, A.; Bader, M.M.; Salim, W.W.A.W. Study of electropolymerized PEDOT:PSS transducers for application as electrochemical sensors in aqueous media. Sens. Bio Sensing Res. 2018, 17, 18–24. [Google Scholar] [CrossRef]
- Jiang, F.; Yao, Z.; Yue, R.; Du, Y.; Xu, J.; Yang, P.; Wang, C. Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. Int. J. Hydrogen Energy 2012, 37, 14085–14093. [Google Scholar] [CrossRef]
- Foronda, J.R.F.; Cabrera, S.M.R.; Cumpas, D.L.; Villar, P.G.A.; Tan, J.L.; Tongol, B.J.V. Enhanced electrocatalytic activity of Pt particles supported on reduced graphene oxide/poly(3,4-ethylenedioxythiophene) RGO/PEDOT composite towards ethanol oxidation. J. Chem. 2013, 2013. [Google Scholar] [CrossRef]
- Cui, L.; Gao, J.; Xu, T.; Zhao, Y.; Qu, L. Polymer/graphene hybrids for advanced energy-conversion and -storage materials. Chem. An Asian J. 2016, 11, 1151–1168. [Google Scholar] [CrossRef]
- Kertesz, M. Pancake bonding: An unusual pi-stacking interaction. Chem. A Eur. J. 2019, 25, 400–416. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chiang, J.Y.; Chou, H.T.; Fu, C.Y.; Chen, Y.C.; Lee, C.Y.; Chang, H.Y. Toxicity analysis of poly(sodium-4-styrenesulfonate) coated graphene on HMEC-1 cells under dynamic conditions mimicking blood flow. RSC Adv. 2017, 7, 51910–51918. [Google Scholar] [CrossRef]
- Graham, D.J. Standard Operating Procedures for Cyclic Voltammetry, 1st ed.; LULU Press: Morrisville, NC, USA, 2018; ISBN 978-1-387-51430-4. [Google Scholar]
- Elmahmoudy, M.; Inal, S.; Charrier, A.; Uguz, I.; Malliaras, G.G.; Sanaur, S. Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics. Wiley 2018, 1404, 11. [Google Scholar] [CrossRef]
- Liu, D.; Rahman, M.M.; Ge, C.; Kim, J.; Lee, J.J. Highly stable and conductive PEDOT:PSS/graphene nanocomposites for biosensor applications in aqueous medium. New J. Chem. 2017, 41, 15458–15465. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sensors Actuators B Chem. 2014, 196, 357–369. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shohibuddin, I.U.S.; Salim, W.W.A.W. Tailoring the Electrochemical and Morphological Properties of Electropolymerized and Dropcast Reduced Graphene Oxide-Poly(3,4-ethylene dioxythiophene):polystyrenesulfonate Transducers for Ion-Selective Sensors. Proceedings 2020, 60, 11. https://doi.org/10.3390/IECB2020-07058
Shohibuddin IUS, Salim WWAW. Tailoring the Electrochemical and Morphological Properties of Electropolymerized and Dropcast Reduced Graphene Oxide-Poly(3,4-ethylene dioxythiophene):polystyrenesulfonate Transducers for Ion-Selective Sensors. Proceedings. 2020; 60(1):11. https://doi.org/10.3390/IECB2020-07058
Chicago/Turabian StyleShohibuddin, Ihda Uswatun Shalihah, and Wan Wardatul Amani Wan Salim. 2020. "Tailoring the Electrochemical and Morphological Properties of Electropolymerized and Dropcast Reduced Graphene Oxide-Poly(3,4-ethylene dioxythiophene):polystyrenesulfonate Transducers for Ion-Selective Sensors" Proceedings 60, no. 1: 11. https://doi.org/10.3390/IECB2020-07058
APA StyleShohibuddin, I. U. S., & Salim, W. W. A. W. (2020). Tailoring the Electrochemical and Morphological Properties of Electropolymerized and Dropcast Reduced Graphene Oxide-Poly(3,4-ethylene dioxythiophene):polystyrenesulfonate Transducers for Ion-Selective Sensors. Proceedings, 60(1), 11. https://doi.org/10.3390/IECB2020-07058