Isolated Power System Safety Analysis †
Abstract
:1. Introduction
2. Structure of the Electrical Network
- If the bus-tie breaker is closed, the SG breakers are interlocked in the open position;
- If the SG breaker is closed, the bus-tie breaker is interlocked in the open position;
- If the bow thruster breaker is closed, the SG breaker is interlocked in the open position;
- When synchronizing the SG in parallel with the diesel generator (DG), the DG breaker has to be open with a time delay;
- Interlocking every auxiliary power station (switchboard) must be defined separately.
- Evaluation of the maximum electrical power needed to be generated (the load reservation is agreed with the customer);
- Given that information on the electrical loads/consumers, which can be based on relative values calculated from reference ships, taking into account different ship operating modes like: sailing, maneuvering, loading, harbor, dynamic positioning-DP this will affect the total load computing;
- Finding the generator number and its apparent power S [VA];
- Selection of main voltage and frequency;
- Computing the voltage drop;
- Computing of the short circuit regime and finding the network selectivity.
3. Designing the Electrical Network According to the Safety Rules
- For cargo ships, the handling equipment has the main role in containerships, and gives the requirement characteristics of the power electrical network;
- For tankers, the pumps and the compressors are mainly the significant factors;
- For passenger ships, the electrical consumers are mainly the air conditioning, the galley equipment, lighting installation, and the transverse thrusters for maneuvering in the harbor;
- For the ships with electric propulsion, the propulsion machinery itself is the dominating factor.
4. Conclusions
Conflicts of Interest
References
- Borstlap, R.; Ten Katen, H. Ships’ Electrical Systems; Dokmar Maritime Publishers: Enkhuizen, The Netherlands, 2011. [Google Scholar]
- Van Dokkum, K. Ship Knowledge: A Modern Encyclopedia, 1st ed.; Dokmar Maritime Publishers: Enkhuizen, The Netherlands, 2003. [Google Scholar]
- Van Dokkum, K. Ship Knowledge: Types of Ships and Their Trades; Dokmar Maritime Publishers: Enkhuizen, The Netherlands, 2003. [Google Scholar]
- Chalfant, J. Early-stage design for electric ship. Proc. IEEE 2015, 103, 2252–2266. [Google Scholar] [CrossRef]
- Dennis, T. Practical Marine Electrical Knowledge, 3rd ed.; Witherby-Seamanship International: Edinburgh, Scotland, UK, 2014. [Google Scholar]
- Carlton, J. Marine Propellers and Propulsion; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- SOLAS. Consolidated Text of the International Convention for the Safety of the Life at Sea; International Maritime Organization: London, UK, 2014. [Google Scholar]
- Ferrante, M.; Chalfant, J.; Chryssostomidis, C.; Langland, G.; Dougal, R. Adding simulation capability to early-stage ship design. In Proceedings of the 2015 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, USA, 21–24 June 2015; pp. 207–212. [Google Scholar]
- Valkeejärvi, K. The ship’s electrical network, engine control and automation. Koninklijke Gallois Genootschap Magazine, March/May 2006. [Google Scholar]
- Menis, R.; da Rin, A.; Sulligoi, G.; Vicenzutti, A. All electric ships dependable design: Implications on project management. In Proceedings of the 2014 AEIT Annual Conference—From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), Trieste, Italy, 18–19 September 2014; pp. 1–6. [Google Scholar]
- Maggioncalda, M.; Gualeni, P.; Notaro, C.; Cau, C.; Bonazountas, M.; Stamatis, S. Life Cycle Performance Assessment (LCPA) Tools: Volume 1: Optimisation of Ship Design and Operation for Life Cycle; Springer: Cham, Switzerland, 2019. [Google Scholar]
- International Electro Technical Commission. Publication 60909-0 Short-circuit Current in Three Phase A.C. Systems, Part: Calculation of Systems. 2016. Available online: https://www.sis.se/api/document/preview/8018642/ (accessed on 1 January 2016).
- Germanischer Lloyd. Short Circuit Calculation Program Version GL ES 1 98. Available online: https://en.wikipedia.org/wiki/Germanischer_Lloyd (accessed on 4 November 2020).
SC in point C | P (kW) | I”kg | Ing | Xd’’ | Í”km | Imn | I”kgtot | I”kmtot | I”ktot | Iptot |
Case 1 Q1 open Q2 open | 360 | 5681.09 | 624.92 | 0.11 | 1642.14 | 273.69 | 5681.09 | 1642.14 | 7323.23 | 16,843.43 |
Case 2 Q1 open Q2 close | 360 | 5681.09 | 624.92 | 0.11 | 1642.14 | 273.69 | 6995.75 | 1642.14 | 8637.89 | 19,867.16 |
88 | 1314.66 | 157.76 | 0.12 | |||||||
Case 3 Q1 close Q2 open | 360 | 5681.09 | 624.92 | 0.11 | 1642.14 | 273.69 | 21,212.07 | 5091.12 | 26,303.19 | 60,497.34 |
360 | 5681.09 | 624.92 | 0.11 | 3449.98 | 574.83 | |||||
515 | 9849.88 | 886.49 | 0.09 | |||||||
Case 4 Q1 close Q2 close | 360 | 5681.09 | 624.92 | 0.11 | 1642.14 | 273.69 | 22,526.77 | 5091.12 | 27,617.86 | 63,521.07 |
360 | 5681.09 | 624.92 | 0.11 | 3449.98 | 574.83 | |||||
515 | 9849.88 | 886.49 | 0.09 | |||||||
88 | 1314.66 | 157.76 | 0.12 |
P (kW) | In (A) | Ku | Is (A) | Kss | Iss (A) | |
Generator 1 | 515 | 886.49 | 0.9 | 797.84 | 1.12 | 900.76 |
Generator 2 | 360 | 624.92 | 0.9 | 562.42 | 1.1 | 618.67 |
Generator 3 | 360 | 624.92 | 0.9 | 562.42 | 1.1 | 618.67 |
Generator emergency | 88 | 157.76 | 0.9 | 141.98 | 1.1 | 156.18 |
Thruster engine | 362 | 574.83 | 0.9 | 517.34 | 1.1 | 569.08 |
Equivalent | 150 | 273.79 | 0.9 | 246.32 | 1.1 | 270.95 |
Equipment | In (A) | Ir (A) | Irt (A) | tr (s) | Iinst (A) | |
Masterpact NT10H1/Micrologic 7.0A | 1000 | 900 | - | 24 | off | |
Compact NSX 630 N/ Micrologic 6.30A | 630 | 630 | 618 | 0.5 | 945 | |
Compact NSX 630 N/ Micrologic 6.30A | 630 | 618 | 618 | 0.5 | 945 | |
Compact NSX 160 N/ Micrologic 6.20A | 160 | 160 | 156 | 0.5 | 240 | |
Compact NSX 630 N/ Micrologic 6.30A | 630 | 570 | 569 | 0.5 | 945 | |
Compact NSX 400 N/ Micrologic 6.3 E-M | 320 | 280 | 270 | 5 | 4800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitrescu, M. Isolated Power System Safety Analysis. Proceedings 2020, 63, 21. https://doi.org/10.3390/proceedings2020063021
Dumitrescu M. Isolated Power System Safety Analysis. Proceedings. 2020; 63(1):21. https://doi.org/10.3390/proceedings2020063021
Chicago/Turabian StyleDumitrescu, Mariana. 2020. "Isolated Power System Safety Analysis" Proceedings 63, no. 1: 21. https://doi.org/10.3390/proceedings2020063021
APA StyleDumitrescu, M. (2020). Isolated Power System Safety Analysis. Proceedings, 63(1), 21. https://doi.org/10.3390/proceedings2020063021